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Abstract. A large number of approaches to Query Performance Pre-
diction (QPP) have been proposed over the last two decades. As early as
2009, Hauff et al. [28] explored whether different QPP methods may be
combined to improve prediction quality. Since then, significant research
has been done both on QPP approaches, as well as their evaluation.
This study revisits Hauff et al.’s work to assess the reproducibility of
their findings in the light of new prediction methods, evaluation metrics,
and datasets. We expand the scope of the earlier investigation by: (i) con-
sidering post-retrieval methods, including supervised neural techniques
(only pre-retrieval techniques were studied in [28]); (ii) using sMARE
for evaluation, in addition to the traditional correlation coefficients and
RMSE; and (iii) experimenting with additional datasets (Clueweb09B
and TREC DL). Our results largely support previous claims, but we
also present several interesting findings. We interpret these findings by
taking a more nuanced look at the correlation between QPP methods, ex-
amining whether they capture diverse information or rely on overlapping
factors.

Keywords: Query Performance Prediction · Fusion · Evaluation ·
Reproducibility · Empirical Study.

1 Introduction

Query Performance Prediction (QPP) has long been an important area of study
within information retrieval (IR) [9,15,17,29,34,45,50,52,60,61]. QPP focuses on
estimating (without utilizing relevance judgments) how well a search engine will
perform on a given query. Accurate predictions of query performance can guide
decisions regarding search strategies, resource allocation, and query reformula-
tion [25,36,44,1]. Over the years, various QPP approaches have been proposed
[15,59,6,42,41,32,39,2,16,10,61,51,45,52]. These methods can be broadly catego-
rized as pre-retrieval or post-retrieval techniques. Pre-retrieval methods [29,31,59]
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estimate query difficulty using only the query and collection statistics, while
post-retrieval methods [15,52,61,50,46,45,51] also use retrieval results (ranked
lists of documents) to make predictions.

Given the plethora of methods proposed in the literature, researchers have
also investigated whether combining different QPP methods yields better pre-
dictions [54,61,28,50,34,35]. In a comprehensive study involving 19 pre-retrieval
predictors (but no post-retrieval methods) and 3 test collections, Hauff et al. [28]
showed that combining predictors yields significant improvements in correlation
between predicted and actual performance. However, the observed gains in terms
of Root Mean Squared Error (RMSE) were modest, or even non-existent. Based
on these observations, the authors proposed two important guidelines regarding
QPP evaluation:

i) When reporting the correlation1 between predictions and actual perfor-
mance, a 95% confidence interval for the observed correlation should also
be reported. This helps in assessing whether observed differences between
methods are statistically significant.

ii) In addition to ρ, a listwise metric, the Squared Error (SE) between the
predicted and measured retrieval effectiveness should be used as a more
interpretable, pointwise metric for QPP, with Root Mean Squared Error
(RMSE) representing the aggregation of these values across a test collection.

In the 15 years since the study by Hauff et al., QPP has witnessed a great
deal of research activity. Our study revisits QPP method fusion in the light of
these advancements, in order to address the following research questions:

RQ1 - Does the combination of pre-retrieval QPP methods consistently enhance
correlation with Average Precision (AP) across different datasets, including
recent web collections, as suggested in [28]? Additionally, does combining
predictors significantly affect RMSE? (Hauff et al.’s results suggest a negative
answer to this question.)

RQ2 - Do the answers to RQ1 change if we consider post-retrieval predictors in-
stead of pre-retrieval estimators?

RQ3 - Is there a relationship between the predictions of different QPP methods,
both within and across pre-retrieval and post-retrieval categories?

To answer the above questions, and to assess whether Hauff et al.’s observa-
tions generalize to newer QPP methods, evaluation metrics, and more modern
datasets, we expand the scope of our experiments along the directions listed
below:

– Incorporation of post-retrieval methods: While Hauff et al. [28] lim-
ited their analysis to pre-retrieval methods, we also consider post-retrieval
methods. This includes not only traditional unsupervised methods but also
more recent supervised neural approaches.

1 In Sections 1–2, we abuse notation, and use ρ as an abbreviation for any of the correlation
coefficients (Pearson’s or Spearman’s Rho and Kendall’s Tau) that are commonly used when
evaluating QPP methods. In Sections 3–5 (Experimental setup, results and analysis), ρ and τ are
used in accordance with standard convention.
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– Evaluation metrics: When measuring prediction quality, we use scaled
Mean Absolute Rank Error (sMARE) [24], in addition to the conventional
correlation measures and RMSE. sMARE is a pointwise metric that is seeing
increased use in recent QPP research. One advantage of sMARE over RMSE
is that calculating RMSE involves fitting a regression model, since QPP
scores are generally not intended to be interpreted as predicted values of
standard metrics like Average Precision (AP), and are often not even in the
[0, 1] range; in contrast, sMARE is parameter free.

– Test collections: Hauff et al. used one news collection (TREC 678) and two
web collections (WT10G and Gov2) for their experiments. In our study, we
repeat their experiments on the TREC 678 collection (also reporting figures
on the Robust collection with 100 more queries), and extend the evaluation
to ClueWeb09B, a much larger Web collection, as well as the more modern
MS MARCO collections, thus providing a more comprehensive evaluation.

Thus, our study has elements of both reproducibility (different team, same exper-
imental setup) and replicability (different team, different experimental setup)2.
Given that the original experiments that we seek to reproduce and extend are
15 years old, we have not attempted to compute quantitative reproducibility
metrics for our efforts using recently proposed tools [7,37]. Instead, when sum-
marizing the answers to our research questions later in Section 6, we categorize
our observations as either new insights, confirmations of, or deviations from those
presented in [28]. A GitHub repository3 provides the artifacts (retrieval results/
ranked lists, code for QPP methods, fusion, and subsequent analysis) necessary
for other researchers to independently corroborate our findings.

2 Related Work

2.1 An overview of QPP methods

In this section, we provide a brief review of two categories of QPP methods,
namely, pre-retrieval and post-retrieval QPPs.
Pre-retrieval approaches. Pre-retrieval performance predictors can, in turn,
be classified based on the query term features used to compute them. One cat-
egory of predictors estimates query-term specificity: they assume that more dis-
criminative terms (i.e., those with higher inverse document frequency (IDF) or
inverse collection frequency (ICTF)) are better at identifying relevant content.
Average IDF (avgIDF) and the maximum IDF values (MaxIDF) [15] fall under
this category. Some studies compute the standard deviation of IDF from the
average of ICTF values (AvgICTF) as specificity-based predictors [32]. Zhao et
al. [59] proposed predictors using collection-based specificity to predict query dif-
ficulty, including methods like the sum of collection and query term similarity
(SumSCQ), normalized query and collection similarity (AvgSCQ), and maximum
collection and query term similarity (MaxSCQ).
2 https://www.acm.org/publications/policies/artifact-review-and-badging-current
3 https://github.com/souravsaha/qpp-comb

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/souravsaha/qpp-comb
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Another category is rank sensitivity, which estimates query difficulty based on
the variation of term weights across documents. Common techniques here include
SumVAR (the total of query term weight variations), AvgVAR (the normalized sum
of these variations), and MaxVAR (the maximum variation among the terms) [59].
Term relatedness predictors leverage estimates of how related the query terms
are to each other. Methods like AvLesk [6], AvPath [42], and AvVP [41] use exter-
nal resources, typically WordNet [38] or co-occurrence statistics, to determine
semantic distances between query terms. The presence of an ambiguous term
in a query can lead to imprecise information needs [49], often resulting in diffi-
culty for retrieval functions [9,39]. Predictors in this category measure ambiguity
by computing the average inter-document similarity of all pairs of documents
containing at least one query term [32] at a cost of quadratic time complexity
which can be mitigated by sampling a subset of document pairs [28]. Variants
like AvQCG include pairs containing all query terms. Averaged Polysemy (AvP)
and Averaged Noun Polysemy (AvNP) utilize WordNet to assess query ambiguity
by considering the number of senses associated with query terms [39].

Post-retrieval approaches. The post-retrieval predictors infer their predic-
tions by taking the ranked list of documents in response to the query as input.
These can be broadly classified into coherence-based, score-based, and robust-
ness-based predictors. Coherence-based predictors measure how strongly docu-
ments retrieved are clustered together, such as Clarity [15]. This pioneering
approach influenced a series of studies that built on the idea of query clar-
ity [2,10,16,61]. Score-based predictors, e.g., WIG [61], NQC [52], and SMV [53],
employ heuristics related to the retrieval scores of retrieved documents. Finally,
robustness-based predictors, e.g., the UEF family [50], the Reference Lists frame-
work [45,51], and RSD [47], compare the original ranking of documents with one
produced by introducing noise in the query, the index, or documents. In parallel,
several researchers explored robustness-based predictors to assess result quality,
focusing on the stability of the top-ranked documents [4,8,54,55,60].

More recently, researchers show that supervised QPP approaches outperform
their unsupervised counterparts [3,11,19,21,33,56]. These methods, in general,
use deep learning techniques trained on large-scale datasets, resulting in im-
proved accuracy. The first (weakly) supervised approach, NeuralQPP [56], uses
pairs of queries to learn a binary indicator denoting which one of the pair leads
to a better (or worse) retrieval effectiveness. A key drawback of this pairwise
technique is that, depending on the size of the training set, the number of pairs
grows quadratically, resulting in a substantial increase in training time. A so-
lution to this increased training time problem was proposed in [3] that intro-
duces BERT-QPP, an adoption of contextual embeddings to perform pointwise
QPP. In contrast, the authors in [19] proposed Deep-QPP, a model employing
a 3-dimensional convolutional neural network to train an end-to-end pairwise
predictor. Inspired by the time efficient BERT-QPP, researchers have further pro-
posed qppBERT-PL [21] which makes use of cross-encoding based query-document
interactions in the form of BERT vectors, trained pointwise on individual queries
while employing a listwise strategy by dividing the top documents into chunks.
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2.2 Combining QPP estimators

While many QPP methods have been proposed, relatively less effort has been
dedicated to effectively combining them. Empirical studies have consistently
shown that combining pre-retrieval and post-retrieval predictors can improve
the accuracy of query performance prediction. An early study proposed a model
to enhance prediction by combining pre-retrieval features (e.g., the rounded log-
arithm of document frequency), with post-retrieval features, including overlap
between ranked lists generated from sub-queries [55]. The first exploratory anal-
ysis of combined predictors was reported by Hauff et al. [28]. Their experiments
with pre-retrieval predictors showed that fusing improves the performance of
the predictors in terms of correlation coefficients (denoted ρ). Subsequent re-
search investigated the integration of pre-retrieval and post-retrieval predictors
within a probabilistic framework. The methods proposed in [34,35] achieved im-
proved prediction accuracy by combining post-retrieval predictors. Kurland et
al. also demonstrated improvements in predictive accuracy through the combi-
nation of post-retrieval predictors, such as Clarity Score [15] and Drift-based [16]
predictors, highlighting the synergistic potential of these methods in QPP [34].
Other research has approached QPP enhancement through the fusion of scores
from multiple rankings derived from different retrieval models. In [22], the au-
thors combined regularized document scores across multiple rankings, further
substantiating the benefit of predictor fusion. Additional studies support this
trend, with researchers showing that combining post-retrieval predictors outper-
forms the use of individual methods, reinforcing the value of integrated predictor
models in query performance prediction [43,61,26,51,48].

Our work builds upon these studies by extending the scope of predictor fu-
sion, specifically focusing on post-retrieval methods, including modern neural
approaches. Additionally, we explore the reproducibility of earlier findings using
larger collections, such as ClueWeb09B [12] and TREC DL [40]. By addressing
gaps in the literature, we aim to provide a better understanding of the effective-
ness of combined QPP methods.

2.3 Evaluation measures

Evaluating the effectiveness of QPP methods requires robust metrics that cap-
ture various aspects of predictive accuracy and randomness. Over time, several
metrics have become standard in QPP research, each offering unique insights
into different facets of predictor performance. The primary metrics we apply for
evaluation include Pearson’s ρ and Kendall’s τ , RMSE, together with the re-
cently proposed sMARE. Correlation coefficients remain one of the most widely
used metrics; they measure the association between the predicted and the ac-
tual performance values, mostly in terms of Average Precision [15,18,47,52,50,61]
across a set of queries. As discussed in Section 1, Hauff et al. [28] highlighted
the drawbacks of using ρ, and suggested reporting confidence intervals.
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Table 1: Datasets used in our experiments. ‘avg.|Q|’ and ‘avg.#rel’ denote average
query length and average number of relevant documents, respectively. ‘Query ids’ col-
umn for TREC DL is left empty as the topic identifiers do not follow a particular order.
Collection Type Document Set (#docs) Topic Set Query ids #topics avg.|Q| avg.#rel

TREC 678 News Disks 4,5 minus CR TREC 6, 7, 8 Adhoc topics 301-450 150 2.45 89.13
TREC Robust (528,155) TREC 678 + Robust topics 301-450, 601-700 250 2.62 68.36

CW09B Web ClueWeb09B-S70 TREC Web Track 2009–2012 topics 1-200 200 2.42 16.02(29,038,220)

TREC DL Web MS MARCO Passage TREC DL’19 + ’20 topics – 97 5.76 42.96(8,841,823) (43+54)

3 Experimental Setup

Datasets. For our investigation in this paper, we leverage three benchmark
IR collections, TREC Robust (news articles with 250 topics), ClueWeb09B [14]
(crawled web pages with 200 topics), and MS MARCO Passage [40] (a question
answering dataset with over 100k Bing queries with 97 topics). Table 1 gives
summary statistics for these collections. For the experiments on ClueWeb09B,
spam documents are removed using the Waterloo spam filter [14] with spam
confidence > 70%. TREC 678 with 150 queries is used to replicate the results
reported by Hauff et al. (see Table 2). Additionally, our preliminary analysis
included two other web collections -WT10G [30] and Gov2 [13] (also used in [28])
- which yielded trends consistent with those found in the newer web collections
in our study. Due to space limitations, we exclude those initial findings in this
paper and instead, focus on the TREC Robust alongside more recent and widely
used web collections, ClueWeb09B and MS MARCO passage, which have gained
popularity among researchers in QPP studies.
Pre-retrieval QPP methods. We employ a range of pre-retrieval predictors
targeting distinct aspects of query performance. Firstly, the specificity-based
methods that include AvgIDF, MaxIDF, SumSCQ, AvgSCQ, and MaxSCQ which esti-
mate query difficulty based on the informativeness of terms in the query. Com-
plementing these methods, we employ the ambiguity-based techniques, such as,
AvP and AvNP, designed to capture the potential variability or ambiguity inherent
in query terms. Additionally, we incorporate rank sensitivity-based methods, like
SumVAR, AvgVAR and MaxVAR [59] (see Section 2.1), which assess the sensitivity of
document rankings to individual terms in the query. Note that, these choices are
made based on the finding reported in [28] where the authors demonstrated the
strong individual contribution in the fused predictors (refer to Figure 6 in [28]).
Post-retrieval QPP methods. We select a representative set of 10 post-
retrieval predictors, grouped into three categories based on the level of super-
vision. Of these, six QPP methods, such as NQC [52], Clarity, WIG [61], and
UEF [50] with the three base estimators (i.e., NQC, WIG and Clarity) are un-
supervised. On the other hand, we employ weakly supervised neural QPP ap-
proach, namely NeuralQPP, that learns the relative importance of different esti-
mators to obtain an optimal feature combination. Additionally, we choose three
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other fully supervised convolutional-based, DEEP-QPP that leverages information
from the sematic interactions between the terms in the top documents and the
query; and transformer-based state-of-the-art models, BERT-QPP which is a cross-
encoder based pointwise QPP estimator; and qppBERT-PL which also makes use
of cross-encoding based BERT vectors generated for the corresponding query
and document terms (for more details see Section 2.1).

Train-test splits. In the QPP literature (e.g., [52,56,57,20]), the most common
experiment setup usually involves random partitioning of the query set into two
halves, train, test and repeating the process 30 times. The average outcome over
30 splits is reported. An identical setup is used for our experiments with TREC
Robust and CW09B collections. However, because the MS MARCO collection
has a designated train:test partition, we tuned the model hyper-parameters on a
random sample (specifically 10% of train split) and reported results on the TREC
DL, which is the subset of MS MARCO test set, as prescribed by [3,21,20]. All the
parameters are tuned by dividing the training set into k-fold cross-validations.
Additionally, to align our results with those of Hauff et al., we employ the same
leave-one-out sampling strategy to predict the AP measure (see Table 2).

Penalized regression. Our objective is to combine m predictors {X1, . . . , Xm},
to predict the target variable, Y , which represents the average precision. A simple
approach is to assume that the predictors are independent and apply multiple
linear regression via Ordinary Least Squares (OLS). OLS aims to minimize the
sum of squared residuals between the observed values and the predicted values,
providing an estimate of the relationship between the predictors and the target
variable. However, in practice, it is often the case that the predictors are not
independent, and may be correlated with each other. When such correlations
exist, the OLS method may suffer from issues such as multicollinearity, leading
to unstable and overfit models. To address this issue, regularization techniques
are commonly employed to improve the generalization ability of the models and
enhance interpretability by enforcing sparsity. The two most common forms of
regularization are the l1 and l2 penalties. The l1 penalty, known as LASSO (Least
Absolute Shrinkage and Selection Operator), encourages sparsity by shrinking
some of the coefficients exactly to zero, thus effectively selecting a subset of the
most important predictors. On the other hand, the l2 penalty, associated with
Ridge regression, encourages smaller coefficients overall but does not set any of
them to zero, allowing all predictors to contribute to the model. An even more
flexible approach is the ElasticNet (denoted as E-Net), which combines both the
l1 and l2 penalties, offering a balance between the sparsity-inducing properties
of LASSO and the stability advantages of Ridge regression. The ElasticNet is
particularly useful when there are many correlated predictors, as it can handle
both the selection of predictors and the regularization of those predictors in a
way that neither LASSO nor Ridge can achieve individually.

Following [28], we also use BOLASSO [5], a computationally inexpensive and
generalized version of LASSO that uses bootstrap samples, and LARs [23]. The reg-
ularization parameters of LARs may be estimated either by introducing random
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Table 2: Comparison of our results with Hauff et al.’s, for pre-retrieval predictors on
TREC 678. For reporting RMSE and sMARE, we use the leave-one-out based approach
described in [28]. Note that, for the regression methods, ρ and RMSE values are not
directly comparable to those in [28], as they used 19 predictors while we use 10 selected
predictors. The ‘% imp.’ columns show the relative improvement in ρ achieved by the
regression methods over the best performing singleton predictor (AvgIDF for us, and
MaxIDF in [28]). Values of ρ are highlighted or underlined if the value obtained by us
is noticeably different from that in [28].
QPP τ ρ (CI) % imp. ρ (Hauff et al.) % imp. sMARE RMSE RMSE (Hauff et al.)
MaxIDF 0.4085 0.5780 [0.46,0.68] - 0.53 [0.41,0.64] - 0.1937 0.1766 0.186
AvgIDF 0.3897 0.6283 [0.52,0.72] - 0.52 [0.39,0.62] - 0.1997 0.1674 0.188
SumSCQ 0.0525 -0.0162 [-0.18,0.14] - 0.00 [-0.16,0.16] - 0.3123 0.2155 0.217
MaxSCQ 0.3825 0.4093 [0.27,0.53] - 0.34 [0.19,0.47] - 0.2096 0.1953 0.205
AvgSCQ 0.2930 0.3691 [0.22,0.50] - 0.26 [0.10,0.40] - 0.2252 0.1999 0.210
SumVAR 0.2855 0.3186 [0.17,0.46] - 0.30 [0.14,0.44] - 0.2383 0.2060 0.206
AvgVAR 0.4327 0.5933 [0.48,0.69] - 0.51 [0.38,0.62] - 0.1891 0.1745 0.185
MaxVAR 0.4505 0.5840 [0.47,0.68] - 0.51 [0.38,0.62] - 0.1840 0.1780 0.182
AvP 0.2122 0.3197 [0.17,0.46] - -0.12 [-0.28,0.04] - 0.2732 0.2039 0.214
AvNP 0.1490 0.1965 [0.04,0.35] - -0.22 [-0.37,-0.06] - 0.2909 0.2109 0.210
OLS 0.4619 0.6205 [0.51,0.71] -1.24 0.69 [0.60, 0.77] 30.19 0.1905 0.1690 0.188
LARS-Traps 0.4297 0.6328 [0.53,0.72] 0.72 0.59 [0.47, 0.68] 11.32 0.1953 0.1702 0.179
LARS-CV 0.4485 0.6398 [0.53,0.73] 1.83 0.68 [0.59, 0.76] 28.30 0.1897 0.1642 0.183
BOLASSO 0.4504 0.6365 [0.53,0.72] 1.30 0.59 [0.47, 0.68] 11.32 0.1917 0.1641 0.181
E-Net 0.4444 0.6253 [0.52,0.71] -0.48 0.69 [0.60, 0.77] 30.19 0.1966 0.1660 0.182

predictors into the model (LARS-Traps) or through cross-validation (LARS-CV).
The same set of regression methods were also employed in [28].
Retrieval settings and evaluation. To ensure a fair comparison with Hauff
et al., we use a language model with Dirichlet smoothing [58] (µ set to 1000)
to retrieve the documents and measure AP with the top 1000 documents. Note
that, this is also the most popular choice among researchers working on the
QPP domain [15,18,47,52,50,61]. As the ranges of QPP scores vary across differ-
ent predictors, we normalize them with min-max normalization before applying
penalized regression. For evaluation, we employ the commonly used correlation
measures - Pearson’s ρ, Kendall’s τ (ρ and τ respectively), RMSE, and sMARE.

4 Experimental Results

4.1 Reproducing results from [28]

As a validation check, we first repeat Hauff et al.’s experiments (with a selected
subset of the pre-retrieval predictors) on the TREC 678 topics (see Table 1). Our
results are presented in Table 2. We note that our ρ values are generally higher
than those reported by Hauff et al. Following their suggestion, we include the
95% confidence interval (CI) for the observed ρ values. For two predictors (AvP,
AvNP), the CIs (highlighted) are non-overlapping; since the corresponding ρs are
fairly low on an absolute scale, we have not looked more carefully into this dif-
ference. For AvgSCQ the difference (underlined) appears numerically substantial,
but is not, in fact, statistically significant. Of greater concern is the noticeable
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Table 3: Results for pre-retrieval methods (top group), and their combinations (bottom
group) across three datasets. We report p-values for a one-tailed t-test when comparing
RMSEs of the combined predictors with the best-performing individual QPP method,
i.e., MaxIDF. The best values for each metric–collection pair are in bold face.

TREC Robust CW09B TREC DL
Predictor τ ρ sMARE RMSE p-value τ ρ sMARE RMSE p-value τ ρ sMARE RMSE p-value
MaxIDF 0.3269 0.4020 0.2264 0.1946 - 0.2017 0.2239 0.2660 0.1665 - 0.3267 0.5053 0.2285 0.2270 -
AvgIDF 0.2959 0.4702 0.2383 0.1867 - 0.1506 0.1569 0.2853 0.1684 - 0.3204 0.4884 0.2236 0.2276 -
SumSCQ 0.0977 0.0617 0.3010 0.2116 - 0.1635 0.2011 0.2839 0.1678 - -0.0498 -0.1573 0.3535 0.2580 -
MaxSCQ 0.3464 0.3787 0.2194 0.1955 - 0.2142 0.2914 0.2670 0.1625 - -0.0468 -0.1733 0.3552 0.2622 -
AvgSCQ 0.2550 0.3409 0.2539 0.1983 - 0.1472 0.1853 0.2896 0.1666 - 0.1198 0.0719 0.2921 0.2695 -
SumVAR 0.2852 0.2810 0.2450 0.2070 - 0.1869 0.2426 0.2768 0.1666 - 0.0825 0.0853 0.3178 0.2606 -
AvgVAR 0.3726 0.4647 0.2146 0.1887 - 0.1595 0.2002 0.2874 0.1666 - 0.3071 0.4093 0.2328 0.2387 -
MaxVAR 0.3694 0.4575 0.2148 0.1913 - 0.1923 0.2761 0.2792 0.1639 - 0.2728 0.4069 0.2572 0.2395 -
AvP 0.1426 0.2432 0.2885 0.2052 - 0.0787 0.0611 0.3173 0.1695 - 0.1194 0.2072 0.2972 0.2558 -
AvNP 0.0802 0.1203 0.3034 0.2096 - 0.0262 0.0170 0.3197 0.1700 - 0.0755 0.1160 0.3014 0.2601 -

OLS 0.3389 0.4746 0.2250 0.1889 0.3606 0.1532 0.1304 0.2857 0.1789 0.7048 0.2009 0.3158 0.2694 0.2607 0.8959
LARS-Traps 0.3002 0.3737 0.2353 0.1957 0.5297 0.1319 0.1433 0.2932 0.1666 0.5027 0.2422 0.3605 0.2546 0.2394 0.7069
LARS-CV 0.2997 0.3851 0.2385 0.1959 0.5049 0.1141 0.1403 0.2955 0.1665 0.5002 0.2524 0.3876 0.2529 0.2387 0.6779
BOLASSO 0.3285 0.4367 0.2291 0.1913 0.4196 0.1500 0.1707 0.2872 0.1682 0.5359 0.2154 0.3311 0.2628 0.2530 0.8402
E-Net 0.3276 0.4226 0.2289 0.1912 0.4096 0.1307 0.1517 0.2923 0.1661 0.4921 0.2492 0.3766 0.2524 0.2391 0.6832

difference in ρ for AvgIDF (highlighted): our measured ρ is at one end of the
CI reported in [28], and vice versa. However, the RMSE values that we obtain
are all very close to those reported in [28]. We tentatively conclude that the
high-level summary of the results in Table 2 (that MaxIDF, AvgIDF, AvgVAR and
MaxVAR provide the best predictions, both in terms of ρ and RMSE) matches
the findings as in [28].

The lower part of Table 2 shows results for combined predictors. The values
of ρ reported in [28, Table 5] for the combined approaches are, in some cases,
substantially (though not statistically significantly) higher than those obtained
via our implementation4. For Hauff et al., combined predictors obtained upto
30% higher ρ than the best performing singleton predictor; for us, these im-
provements are negligible (< 2%). However, the improvements in terms of τ and
sMARE are a little more noticeable. In terms of RMSE, the individual predictors
perform roughly at par with the combinations; this is consistent with Hauff et al.
Overall, Table 2 indicates that, across evaluation measures, combining predic-
tors is not beneficial. This result is in contrast to Hauff et al.’s observation that
“Independent of the quality of the predictors, r [denoting Pearson’s ρ] increases
as more predictors are added to the model” [28, Figure 2]. Notably, their paper
does not provide any further insights into this surprising behaviour. In contrast,
we offer an explanation for this major difference in Section 5.

4.2 Pre-retrieval predictors on additional collections

Table 3 presents the pre-retrieval QPP results across three datasets in terms of
all the evaluation measures. The results for TREC DL are clearly in agreement
with the summary for Table 2: once again, MaxIDF, AvgIDF, MaxVAR, and AvgVAR
4 The combinations in [28] involved 19 pre-retrieval predictors, while we combine 10 of the best

predictors from their set, but this does not seem to adequately explain these differences.
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Table 4: Results for unsupervised (top group) and supervised (middle group) post-
retrieval methods, as well as their combinations (bottom group), across three datasets.
We report p-values for a one-tailed t-test when comparing RMSEs of the combined
predictors with the best-performing individual predictor, qppBERT-PL. The best values
are in bold face.
Predictor TREC Robust CW09B TREC DL

τ ρ sMARE RMSE p-value τ ρ sMARE RMSE p-value τ ρ sMARE RMSE p-value
NQC 0.3960 0.3315 0.2025 0.2025 - 0.2423 0.1783 0.2554 0.1726 - 0.3119 0.2463 0.2330 0.2577 -
WIG 0.3163 0.3982 0.2367 0.1950 - 0.2624 0.3032 0.2447 0.1620 - 0.3295 0.4768 0.2315 0.2304 -
Clarity 0.2632 0.3899 0.2515 0.1948 - 0.2244 0.3134 0.2693 0.1610 - 0.2796 0.4393 0.2459 0.2358 -
UEF-NQC 0.3801 0.3469 0.2066 0.2015 - 0.2489 0.1853 0.2541 0.1711 - 0.3316 0.3092 0.2272 0.2505 -
UEF-WIG 0.2938 0.4205 0.2430 0.1924 - 0.2697 0.1069 0.2467 0.1789 - 0.3402 0.4887 0.2279 0.2299 -
UEF-Clarity 0.2313 0.2962 0.2614 0.2019 - 0.1611 0.2881 0.2887 0.1664 - 0.2822 0.4560 0.2470 0.2325 -
NeuralQPP 0.4204 0.3165 0.2031 0.2003 - 0.1995 0.3054 0.2691 0.1619 - 0.3857 0.5287 0.2098 0.2212 -
qppBERT-PL 0.4740 0.6396 0.1759 0.1632 - 0.2284 0.3553 0.2567 0.1591 - 0.3905 0.5939 0.2030 0.2113 -
Deep-QPP 0.4348 0.5598 0.1874 0.1747 - 0.2201 0.3332 0.2686 0.1604 - 0.3892 0.5492 0.2151 0.2176 -
BERT-QPP 0.4656 0.6093 0.1808 0.1680 - 0.2233 0.3424 0.2699 0.1598 - 0.4111 0.5459 0.1992 0.2205 -
OLS 0.5704 0.7246 0.1470 0.1469 0.1724 0.2325 0.3254 0.2610 0.1668 0.6494 0.4372 0.5946 0.1940 0.2146 0.5196
LARS-Traps 0.5639 0.7240 0.1507 0.1454 0.1094 0.2176 0.3527 0.2730 0.1567 0.4435 0.4169 0.5753 0.2040 0.2115 0.4981
LARS-CV 0.5595 0.7225 0.1512 0.1489 0.1524 0.1990 0.3073 0.2746 0.1720 0.5208 0.4471 0.6216 0.1917 0.2003 0.3032
BOLASSO 0.5876 0.7577 0.1490 0.1371 0.0328 0.2486 0.3581 0.2576 0.1615 0.5462 0.4440 0.6171 0.1930 0.2071 0.4156
E-Net 0.5842 0.7538 0.1442 0.1379 0.0347 0.2355 0.3652 0.2646 0.1563 0.4316 0.4508 0.6266 0.1907 0.1997 0.2949

appear to be the best-performing predictors in terms of all metrics. This obser-
vation mostly holds for TREC Robust as well, where MaxSCQ also emerges as a
promising predictor, outperforming MaxIDF and AvgIDF on two of the four met-
rics (underlined in Table 3). CW09B presents the most confusing picture: there
is little variation in the RMSE values across all methods; to a lesser extent, the
same holds true for sMARE. Overall, MaxSCQ seems to deliver the best results,
even though the IDF and VAR variants also perform reasonably well.

As before, we present the penalized regression results in the lower part of Ta-
ble 3. Once again, combining pre-retrieval predictors does not improve results on
any of the collections; in fact, combined predictors often perform worse. For ex-
ample, for CW09B, Pearson’s ρ decreases from 0.2914 (MaxSCQ, CI=[0.16,0.41])
to 0.1707 (BOLASSO, CI=[0.03,0.30]), and sMARE, RMSE scores increase marginally
from 0.2660 (MaxIDF) and 0.1625 (MaxSCQ) to 0.2857 (OLS) and 0.1661 (E-Net),
respectively. Thus, in response to RQ1, we find that combining predictors using
penalized regression techniques does not improve predictor performance (as mea-
sured by correlations with AP). For more recent and larger collections, this could
even lead to degraded performance. For these newer collections, both RMSE and
sMARE metrics also show a decline when compared to individual predictors.

4.3 Results for post-retrieval predictors

Table 4 shows the performance of individual post-retrieval methods, as well as
their combinations. We observe a clear separation in performance between su-
pervised and unsupervised methods, with qppBERT-PL performing best overall.
The bottom group in Table 4 presents results obtained by combining 10 post-
retrieval predictors (these include both unsupervised and supervised methods;
please see Section 3 for details). We observe that both BOLASSO and E-Net ap-
proaches perform comparably well across all evaluation metrics. Compared to
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Fig. 1: Heatmap visualizing the rank correlation among QPP methods based on their
individual QPP scores. Colour intensity represents the correlation values between the
corresponding techniques measured with ρ; lighter intensity represents higher correla-
tion. The upper row depicts the correlation for pre-retrieval methods and the bottom
row shows the post-retrieval QPP correlations for all the collections.

the best standalone predictor (qppBERT-PL), these methods yield notable im-
provements (23% and 18%, resp.) in τ and ρ for the TREC Robust collection,
but only the decline in RMSE (from 0.1632 (qppBERT-PL) to 0.1371 (BOLASSO))
is statistically significant (one-sided t-test, p-value = 0.0328). Further, these im-
provements fade as collection size increases, dropping to less than 5% for larger
collections. None of the improvements observed on CW09B and TREC DL are
significant. Indeed, in one case (rank correlation (τ) on CW09B), a performance
degradation is observed. These findings address RQ2, and suggest that pre- and
post-retrieval predictors behave differently. Specifically, combining post-retrieval
predictors improves prediction accuracy, although this advantage gradually de-
clines as collection size grows.

5 Discussion

We now turn to a deeper analysis of the behavior of combined predictors, by
looking more closely at the relationships between different predictors. To the
best of our knowledge, this issue has received limited attention, and seems to
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have been carefully explored only in [27], where the author reported Kendall’s
τ among a set of pre-retrieval predictors (see Tables 2.3 and 2.6 in [27]).

We compute pairwise ρ values between the lists of QPP scores calculated
using different QPP methods5. Figure 1 displays these values as a heatmap for
each collection for the two families of QPP approaches. Notably, we observe a
high correlation (ρ > 0.7) among the IDF variants, VAR variants, collection-based
specificity methods, and the polysemy-based approaches (AvP and AvNP) across
all datasets when using pre-retrieval methods. Overall, the correlation among
the pre-retrieval predictors are seen to be moderate to high with the exception
of SumSCQ and SumVAR, which do not correlate well with the other predictors.
However, they are mutually strongly correlated, with ρ reaching a peak of 0.94
in the case of CW09B.

In contrast, post-retrieval predictors generally show lower correlation be-
tween methods. Among these, only the UEF variants display moderate to high cor-
relation with each other. Neural methods, particularly NeuralQPP, qppBERT-PL,
Deep-QPP, and BERT-QPP, demonstrate varied correlation behavior; for collec-
tions with fewer training queries (e.g., TREC Robust and CW09B), these meth-
ods show negligible correlation, while their correlations increase with the avail-
ability of more training data, as observed with the TREC DL collection (ρ > 0.5).

Further, we observe nearly zero to negative intra-predictor correlations, par-
ticularly among the pre-retrieval predictors in the TREC DL collection. For ex-
ample, in TREC DL collection, correlations between the pairs (SumSCQ, AvgIDF)
or (SumSCQ, AvgVAR) are observed to be negative (ρ < −0.3). In addition, the
post-retrieval predictors exhibit a significant reliance on the amount of training
data, which leads to low correlations in collections with fewer training samples.

By integrating the findings from the heatmap in Figure 1 with the fused pre-
dictors presented in Tables 3 and 4, we propose the following three hypotheses.

Hypothesis 1 (H1): If the correlation between predictors is moderate to high,
combining them will not significantly improve performance.

Based on this hypothesis, we can analyze the results in the tables, particularly
for pre-retrieval in TREC Robust and post-retrieval in CW09B, to understand
the lack of improvement in the combined predictors. The correlation between
the predictors in these two cases (the first and fifth heatmaps in Figure 1) are
moderate to strong; thus, combining predictors for TREC Robust (in Table 3)
and CW09B (in Table 4) does not yield any improvements. This lack of sig-
nificant improvement can be attributed to the fact that no new information is
being added, as the predictors being combined are quite similar to each other
(as indicated by the high correlation).

Hypothesis 2 (H2): Low correlation among predictors may lead to an im-
provement in performance when they are combined.

In the fourth and sixth heatmaps in Figure 1, we observe lower correlations
among the pairs of post-retrieval predictors for the TREC Robust and TREC
5 We also validated our results for the TREC678 collection against those reported in [27].
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DL collections. Our second hypothesis H2 suggests that in such cases, combin-
ing predictors could enhance performance. The performance improvements arise
because the combined predictors are relatively unrelated, creating opportunities
for complementary strengths to enhance overall accuracy. This is supported by
the results in Table 4, where we note improvements in these two collections.
Hypothesis 3 (H3): If the correlation between predictors is negative, combin-
ing them may degrade performance.

When the pre-retrieval predictors are applied to the TREC DL collection,
we observe significant negative correlations between pairs of predictors as shown
in Table 3. Our third hypothesis, H3, posits that combining predictors that
conflict with one another may degrade overall performance. This decline occurs
because negatively correlated predictors provide contradictory signals, which
may cancel each other out or introduce noise into the combined prediction. This
is empirically verified in Table 3 for the TREC DL dataset, where all metrics
against the combined predictors indicate a decline in performance.

Thus, in response to RQ3, we conclude that a discernible relationship, whether
positive or otherwise, among the predictors is evident due to which they exhibit
similar performance producing the observed correlations. This is supported by
the heatmap and result tables, and is formalized by the proposed hypotheses.

6 Conclusion
In this study, we have revisited and extended earlier work on combining dif-
ferent QPP methods to enhance prediction accuracy. Our results demonstrate
that, while combining predictors can improve correlation metrics in some cases,
these benefits diminish with larger collections and specific predictor relation-
ships. Notably, combining predictors that have low positive correlation among
themselves can yield improved performance, but if the predictors are strongly
positively correlated, or negatively correlated, combining them provides no ben-
efits, and may lead to degraded results. This is a more fine-grained version of
Hauff et al.’s observations.

Our experiments highlight that, while penalized regression techniques like
BOLASSO and E-Net may constitute robust combination strategies, the impact
of combining predictors varies significantly between dataset types and predictor
categories. Thus, careful consideration of predictor relationships is essential to
maximize QPP accuracy, with potential implications for future model selection
and hybridization strategies in QPP research. As part of future work, we plan
to explore the individual combination process more carefully considering the
predictor-predictor relationship.
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