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Abstract

Current approaches for word-sense disambiguation
(WSD) try to relate the senses of the target words by
optimizing a score for each sense in the context of all
other words’ senses. However, by scoring each sense
separately, they often fail to optimize the relations be-
tween the resulting senses. We address this problem
by proposing a HITS-inspired method that attempts to
optimize the score for the entire sense combination
rather than one-word-at-a-time. We also exploit word-
sense disambiguation via topic-models, when retriev-
ing senses from heterogeneous sense inventories. Al-
though this entails the relaxation of several assumptions
behind current WSD algorithms, we show that our pro-
posed method E-WSD achieves better results than cur-
rent state-of-the-art approaches, without the need for
additional background knowledge.

Introduction
Word-sense disambiguation (WSD) chooses the correct
sense of a word from a set of different possible senses. The
set of possible senses are hereby usually obtained from one
knowledge base, and the choice of the right sense is based
on the observed context of the word. WSD plays an im-
portant role for a wide set of applications, such as infor-
mation retrieval & Web search, entity resolution, concept
recognition, etc. WSD is formally defined as follows (Nav-
igli 2009). Given n related words {w1, w2, ..., wn}, called
target words, each target word wi has mi possible senses,
denoted wi#j, i ∈ {1, ..., n} and j ∈ {1, ...,mi}, such that
wi#j denotes the jth sense of the target wi. The problem is
to find, for each target word wi, the appropriate sense wi#∗,
in the context of all the other target words wj , j 6= i. This
general WSD problem is usually extended by assuming that,
for each sense wi#j, we also have a bag of auxiliary re-
lated words ωk

ij , where ωk
ij denotes the kth word related to

the sense wi#j.
Current WSD algorithms agree upon the intuition that, for

a particular context, the correct senses of all target words
should be related. The sense of a target word is usually cho-
sen based on the connectivity of that sense to all the possi-
ble senses of all other target words and no measure of re-
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latedness among the final chosen senses is computed. As
we illustrate in this work, this results in problems in certain
cases. In addition, modern web technologies make more and
more heterogeneous sense inventories publicly available.
This availability of diverse background knowledge is not ex-
ploited by most WSD algorithms that are highly-tailored for
single inventories.

The contribution of this paper is three-fold. First, we
propose an eigenvalue-based measure, E-WSD, inspired by
HITS (Kleinberg 1999), which computes the relatedness
within combinations of word senses to overcome the afore-
mentioned drawbacks. We show that this method is suited to
identify the optimal combination of senses without the need
for any additional background knowledge. This results in an
improved accuracy of WSD compared to current state of the
art algorithms that rely on similar background knowledge,
but select the right sense for one word at a time. Second,
we base our approach for WSD on two different inventories:
WordNet(Miller 1995) and DBPedia1. We show that the in-
clusion of DBPedia results in a significant gain in accuracy
compared to the traditionally exclusively used WordNet.

The third novel aspect of our work is that we exploit word-
sense disambiguation via topic-models (Steyvers and Grif-
fiths 2007). This helps to reduce the complexity of WSD
tasks for large text corpora. Although topic models have
been used for document representation and extraction of re-
lated words for many years, word-sense disambiguation fo-
cuses mainly on disambiguation of words in the context of
phrases. We show that the context created by a topic can be
used to improve disambiguation performance, by amplifying
the relatedness between target words appearing in the same
context. Our evaluations are performed on ground truth data
collected via a two week crowd-sourcing experiment.

The use of topics and heterogeneous sense sources en-
tails the relaxation of several assumptions behind current
WSD algorithms, and consequently the emergence of new
challenges. First, there is no unified structure to connect
the senses. Second, within topics it is not clear what part
of speech the words have been used with. Third, the sense
source might be intractable or require many resources for
pre-processing. We believe that these challenges have to be
faced by modern WSD algorithms in the current Web con-

1http://dbpedia.org



text, where more and more data and data sources are made
available.

Related Work
The unsupervised WSD systems can be split into two cat-
egories: The first type of system usually extracts a lexical
knowledge base (LKB) from a sense inventory containing
semantic representations of all the word senses before the
actual task of WSD (Agirre and Soroa 2009; Navigli and
Velardi 2005; Mendes et al. 2011). These approaches often
suffer from lack of portability, as LKB creation is dependent
on the structure, availability and scale of the sense inventory.

Our approach is closer to the second type of system,
which uses on-the-fly queries on sense inventories. One of
the most popular approaches is based on maximizing the
number of overlapping words in the definitions (Lesk 1986).
Recently, Anaya-Sánchez et al. (2009) represented all the
possible senses as topic signatures, and then applied an ex-
tended star clustering algorithm to find groups of similar
senses. Then, the clusters are iteratively scored and ordered
based on the number of words they disambiguate, context
overlap and WordNet sense frequency. We envisage a similar
workflow where the clusters are scored using the eigenvalue-
based measure proposed in this paper.

Closer to our approach, Tsatsaronis et al. (2007) used
a strategy based on applying spreading activation to a
weighted graph where the target words are initially linked
to their possible senses in WordNet. However, where mul-
tiple sense inventories are used, the activation network may
be disconnected or related senses from different inventories
may never activate each other. The approach also relies on
the assumption that the sense inventory provides relations
among senses. Our approach relaxes these requirements.

Work by Sinha & Mihalcea (2007) is most closely aligned
with our proposed approach. The authors present a graph-
based WSD framework, which can accommodate any type
of measure of relatedness between senses and any centrality
measure to determine the most connected senses. However,
this approach optimizes each individual sense selection, not
the joint choice of senses. Consequently, there is the risk that
selected senses will not be related to each other, breaking a
main assumption behind WSD.

Most unsupervised WSD approaches naturally tend to
prefer senses with longer definitions, as there are more
words with which they can overlap. We overcome this bias
by weighting related words based on the number of senses
they occur in. Thus, a term occurring in several definitions
will receive more emphasis than a term that occurs in two
definitions alone. This idea strongly resonates with the HITS
algorithm. Also, we propose a novel weighting scheme pe-
nalizing senses that relate to many named entities without
sharing them with other senses.

Motivation
We illustrate the main issues addressed in this paper in the
toy example shown in Table 1, where we want to disam-
biguate three target words: {web, internet, page}. It is not
hard for humans to determine that the correct meanings for

the two ambiguous targets web and page are web#1 and
page#1 respectively. One important evidence is that they
share the related word computer. However, when this knowl-
edge alone is available, current graph-based WSD algo-
rithms from (Sinha and Mihalcea 2007) will generate the
graph in Figure 1. Originally, the edges are weighted with
the number of overlapping words between the senses. In our
toy example all these weights equal to 1, so we omit them
from the figure. The score for each sense is computed as the
degree of the corresponding node, and appears in the figure
under the sense representation.

Target Candidate Related words
web web#1 computer, network, application

web#2 feather, net, flat, part
web#3 world, english, bible, work, public

internet internet#1 computer, connected, http, net
page page#1 computer, media, public

page#2 paper, flat, side
page#3 boy, work, knight, part

Table 1: A toy example for three target words, with a set of
candidate meanings and their respective related words.

This example helps us to illustrate three drawbacks of this
and most other approaches that handle WSD in one-word-at-
a-time manner. Firstly, inspecting the disambiguation of the
word web: the score for web#2 is 3, as it accumulates the de-
gree score from the sense internet#1, page#2, and page#3.
But page#2 and page#3 are mutually exclusive, since an
instance of the word page cannot have both senses at the
same time. Therefore, their connection to the other target
words’ senses should be treated separately. The same prob-
lem causes page#3 to achieve a score of 2.
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Figure 1: Graph generated by current graph-based WSD al-
gorithms on the toy disambiguation example in Table 1.

The second problem is encountered when bringing to-
gether the local disambiguation solutions. For the word web,
it will return the sense web#2, while for the word page it will
return page#1. While the two senses accumulate the highest
scores due to their connectivity to other senses, they are not
related to each other by any connection. But the main as-
sumption behind word-sense disambiguation is that the tar-
get words should have been used with related senses. There-
fore, we argue for a disambiguation approach that aims to



optimize the overall score among all disambiguated senses,
rather than optimize a local score for each sense.

The third problem that we identify is that, while the sense
web#1 shares the term “computer” with both internet#1 and
page#1, this ternary relation is ignored. This is due to the
fact that current approaches do not represent the related
words as nodes of the graph, therefore ignoring important
knowledge. Indeed, in this case the system would choose
the correct meaning for word page, but due to a lucky coin-
cidence, and it would fail to give a reasonable explanation to
the user for the choice.

These three problems can be avoided by (i) consider-
ing the related words as components of the graph structure,
therefore being able to weight them accordingly; (ii) treat-
ing each meaning combination separately, therefore avoid-
ing problems due to score accumulation from mutually ex-
clusive senses and problems due to a poor local optima.

Eigenvalue-Based WSD (E-WSD)
We propose an approach inspired by the weighted variation
of the HITS algorithm (Kleinberg 1999; Bharat and Hen-
zinger 1998), which uses the principal eigenvalue of the
hubs matrix2 as a score for each possible sense combina-
tion. By scoring the whole disambiguation graph with this
eigenvalue, our proposed approach solves the WSD task by
concurrent disambiguation of all words in the topic at the
same time, rather than one-word-at-a-time disambiguation.

To avoid the problems identified in the previous section,
our approach evaluates each possible joint disambiguation,
and selects the one with the highest score. This ensures that
the selected senses will be strongly inter-related. The ap-
proach makes use of the related words not just to compute
the similarity between senses, but as stand alone entities. By
considering the relations between the senses and the related
words, a bipartite graph can be built. Since related words be-
longing to a single meaning cannot be used in a measure of
similarity between meanings, we only represent target words
which belong to at least two meanings. In this way, each
combination of meanings can be represented by a bipartite
graph, as shown in the example in Figure 2.

Let W be the adjacency matrix corresponding to the bi-
partite weighted graph of the current sense combination,
where the entry Wij is the weight of the edge going from
the current sense of word wi to the related word ωj . The
strength of the relation between two senses can be measured
by computing their inner product. Mathematically, this is
expressed by Rij =

∑
kWikWjk = (WW

T

)ij , i 6= j,
where WW

T

is called the hubs matrix. As for the case
when i = j, the importance of a sense to the joint dis-
ambiguation graph can be interpreted as the magnitude of
its vector mi =

√∑
kWik. Then, we can define the di-

agonal matrix M = diag(m1
2,m2

2, ...,mn
2), resulting in

WW
T

= R + M . Therefore the hubs matrix represents a
very simple relation between the relatedness of two senses

2The principal eigenvalue of the hubs matrix is always equal to
the principal eigenvalue of the authorities matrix. In this paper we
will refer to it as the eigenvalue of the hubs matrix.
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Figure 2: Bipartite graphs generated by each combination of
meanings in the toy disambiguation example in Table 1, with
the corresponding eigenvalue scores (λ).

and their magnitudes. A similar intuition can be built for the
authorities matrix W

T

W .
When W represents the weighted adjacency matrix of a

bipartite graph, the principal eigenvalue λ of WW
T

corre-
sponds to the most densely linked collection of hubs and
authorities (Kleinberg 1999). Similarly, in the WSD setting,
the principal eigenvalue will define the most densely linked
network of meanings and words. Therefore, the magnitude
of the principal eigenvalue of the WW

T

matrix can be used
as a score for a meaning-word network. We can then select
the best word sense combination as the graph whose hub and
authority matrices have the highest principal eigenvalue.

Assigning Weights to Edges
The edges in our disambiguation bipartite graph point from
senses to their related words. The eigenvalue of the hubs ma-
trix of the graph will depend only on the adjacency matrix,
therefore on the edge weights. In order to weight the senses
or the related words, the weights of the connecting edges
must be adjusted accordingly.

Our disambiguation scoring scheme starts from the as-
sumption that important related words should belong to
the bag of words of many important senses. This is en-
sured by computing the eigenvalue based score as shown in
the previous section. Furthermore, we consider named enti-
ties (Finkel, Grenager, and Manning 2005) as a key indicator
for the importance of a sense in the joint disambiguation. If a
sense definition refers to many named entities, and no other
sense in the joint disambiguation relates to the same named
entities, we consider that sense too specific and penalize it.
A straightforward penalty computation is:

pi =

{
|NEi∩

⋃
j 6=i NEj |

|NEi| if |NEi| ≥ t
0 otherwise

whereNEi denotes the set of named entities belonging to
the bag of words of sense i, and t is a predefined threshold.
In our experiments we set t = 4.

If we consider the weight of a sense as wi = 1− pi, then
we compute the weight of an edge as

wik = wi

∑
j∈S(k), j 6=i

wj ;
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Figure 3: A set of four examples illustrating how sense penalties influence the weights of graph edges.

where wik denotes the weight of the edge going from
sense i to related word k, and S(k) represents the set of
senses which are connected to the related word k.

Figure 3 shows examples of how sense penalties influ-
ence the weights of graph edges. Figure 3(a) shows how the
penalty for the sense w3#1 is propagated to the edges in the
graph. Figure 3(b) shows the case when there is no penalty,
while in Figure 3(c) the sense is penalized with 0.2. Finally,
Figure 3(d) shows the case when the penalty is 1, effectively
removing the sense from the computation.

An important aspect which makes this strategy applicable
in our approach is that a sense will only be penalized in a
group of senses it shares no entities with. At the same time,
in another combination of senses, the same sense might be
better connected and not attract any penalty. Note that this
egde weighting scheme is generally applicable with other
heuristics for sense penalizing.

The E-WSD Algorithm
Given the target words to disambiguate and the bag of words
representing each possible sense of all words, the proposed
E-WSD algorithm involves the following steps:

1. Generate all possible combinations of senses. For each
sense combination, execute steps 2 and 3 below.

2. Create the weighted bipartite graph, and the correspond-
ing adjacency matrix W relating senses to the related
words, where edges are weighted as described previously.

3. Compute the score of the combination as the principal
eigenvalue of the square matrix WW

T

.
4. Assign each target word to the corresponding sense in the

combination with the highest score.

The generated bipartite graphs are very small, so that steps
2 and 3 do not result in significant computational overhead.
The overall quality improvements come with the overhead
of processing all possible combinations. We come back to
these issues and possible optimizations in the results and dis-
cussion section.

Evaluation
To test E-WSD, we attempted to link the target words oc-
curring in topics with either DBPedia concepts or WordNet
concepts. In order to retrieve possible meanings from DBPe-
dia, we used the DBPedia look-up service, YAGO(Hoffart
et al. 2011) and the DBPedia SPARQL endpoint. For each
retrieved DBPedia resource, we also collect the DBPedia

categories and classes it belongs to. From WordNet we re-
trieve the definition, synonyms, hypernyms, and meronyms,
if available.

All the data collected about each sense are then passed
through a text processing phase consisting of stopword re-
moval, word stemming, 2-gram and 3-gram phrase extrac-
tion, and named entity extraction (Finkel, Grenager, and
Manning 2005). This results in a bag-of-words representa-
tion for each sense. We then applied an implementation of
the E-WSD algorithm to our data.

As a state-of-the-art baseline we implemented the algo-
rithm described in (Sinha and Mihalcea 2007), weighting the
edges with the Lesk method (Lesk 1986) and computing the
node centrality with in-degree node centrality. We also ran a
random baseline for 10 times over the words and senses and
we report the average of the obtained values.

Crowd-Sourcing Ground Truth Data
Since the Senseval3 corpora for word-sense disambiguation
do not contain annotations for DBPedia senses, we ran a
crowd-sourcing experiment to gather ground truth bench-
mark data for WSD. In order to generate the data, we ran
LDA (McCallum 2002) on three corpora: (i) British Aca-
demic Written English Corpus (BAWE) (Nesi et al. 2007),
(ii) BBC (Greene and Cunningham 2006), and (iii) Semantic
Web Corpus 4. We extracted 500 topics, 250 topics, and 100
topics from these three corpora respectively. We randomly
selected a subset of 130 topics to match the feasibility of a
user study. Afterwards we automatically extracted the possi-
ble senses from WordNet and DBPedia as described above.

We created a web interface to gather the annotators’ in-
put. For each randomly selected topic, annotators were given
seven related target words. For each word, the system listed
the definitions of the possible senses extracted from DBPe-
dia and WordNet. For each sense, they could assign a score
on a scale from 5 to 1 where 5 represents “Perfect match”,
3 represents ”Acceptable”, and 1 represents “Not related at
all”. They could also label a word as being too ambiguous
in the given context, could label the whole topic as too am-
biguous, or just skip the whole topic. In the final data set,
each sense has been annotated by three different annotators.

77 annotators participated in the experiment. After finally
removing topics and words marked as too ambiguous by the
users, we resulted in 55 topics from the BAWE corpus, 28
from BBC, and 33 from the Semantic Web corpus. The final
set contained a total of 116 topics, 500 unique words, 633

3http://www.senseval.org/
4http://data.semanticweb.org



if at least 2 annotators label the sense with:
Hit 3, 4, or 5 4 or 5 5
Miss 1 or 2 1,2, or 3 1,2,3, or 4

Acceptable Good Perfect

Table 2: Algorithm performance assessment scheme.

Disagreement Only CAW Correctness #Total Fleiss Figures
Filter Assessment Words Kappa

YES YES
Acceptable 330 0.83

Figure 4Good 305 0.73
Perfect 261 0.56

YES NO
Acceptable 588 0.83

Figure 5Good 557 0.73
Perfect 490 0.56

NO NO
Acceptable 616 0.63

Figure 6Good 586 0.55
Perfect 515 0.48

Table 3: Experiment setups; CAW stands for Computation-
ally Ambiguous Words

words occurrences to be disambiguated, and 2578 annotated
senses.

Results
For accuracy assessment of the WSD algorithms, we col-
lapsed the sense annotation categories into two categories
(Hit and Miss) and assessed the performance of the algo-
rithms as “Acceptable”, “Good”, and “Perfect” according to
Table 2. For instance, when we report the accuracy for the
“Acceptable” case, it means that we counted as a hit a word
for which the algorithm returned a sense that achieved at
least two human annotations of 3, 4, or 5.

Regarding the word senses, we consider a sense annotated
as right if at least two users labelled it with 3, 4, or 5. We
consider it annotated as wrong otherwise. For an improved
inter-annotator agreement, we also ran the experiments af-
ter filtering senses that were annotated with 4 or 5 by some
annotators and with 1 and 2 by other annotators. Thus, this
filter removes highly polarizing senses and removes cases
with high inter-annotator disagreement. Thus, we refer to it
as disagreement filter.

Because we gathered senses from two sense inventories,
there is a high chance that more senses of one word are an-
notated as right. This possibility is further amplified by the
use of topics as contexts for the words as it is sometimes
impossible to get a clear-cut between closely related senses.
Thus, in our case, rather than distinguish between polyse-
mous and monosemous words, it is of more importance to
distinguish between (i) words that were annotated with both
right and wrong senses, and (ii) words annotated only with
right or only with wrong senses. Only words annotated with
both wrong and right senses pose an actual disambiguation
challenge to the WSD algorithms, so we simply call them
computationally ambiguous. Words whose senses were all
either annotated right or all wrong are consequently called
computationally non-ambiguous. We report the main results
corresponding to the cases summarized in Table 3. The tests
were carried only on the words which had at least one word
annotated as a possible hit for each of the three correctness

assessment cases. This avoids penalizing the algorithms for
not finding the right sense when in fact there is no such
sense.
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Figure 4: Accuracy measured only on computationally am-
biguous words, after applying the disagreement filter

We now present the comparative results obtained by run-
ning the three approaches. Figure 4 presents the accuracy
values obtained only on computationally ambiguous words,
after applying the disagreement filter. This setting contains
the words and senses which achieved the highest inter-
annotator agreement, i.e., 0.83. Because we wanted to check
whether the number of words in the topic influences the per-
formance of the algorithms, we ran the same experiment
with 7, 8, 9, and 10 words per topic. Although small fluc-
tuations appear in the performance of both algorithms, no
consistent trend was observed.
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Figure 5: Accuracy measured on words after applying the
disagreement filter

We also ran the algorithms on all words filtered only by
the disagreement filter. The results are presented in Figure 5.
As expected, this strongly improves the performance of all
algorithms. This is due to the fact that most computationally
non-ambiguous words had all their senses annotated as right.
These results show that when run on WordNet and DBPedia,
considering the context as topics, the unsupervised WSD al-
gorithms can have a high accuracy. However, for comparing
the two algorithms, the results in Figure 5 are not as conclu-
sive as those in Figure 4.

Finally, we report on the results obtained when running
the algorithms on all words and senses in Figure 6. Although
causing the most disagreement among annotators, this set-
ting has the highest number of words covered.
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Figure 6: Accuracy measured on all words, without the dis-
agreement filter

Discussion and Conclusions
All the tests we ran show that the E-WSD achieves sig-
nificantly higher accuracy than other graph-based state-of-
the-art WSD algorithms. The highest accuracy reported in
(Sinha and Mihalcea 2007) is 0.611. In our setting, the same
algorithm achieves an accuracy ranging from 0.59 to 0.78 on
the “Perfect” assessment configuration. This suggests that
using topics as contexts, the accuracy of unsupervised WSD
algorithms can be significantly improved. This result is intu-
itive given that words co-occuring in a topic have a stronger
relatedness than words co-occuring in a text window. The
use of DBPedia as a sense repository in addition to Word-
Net leads to the remarkable fact that out of the 633 words
evaluated, only 17 had no sense annotated as right. Thus,
querying these two repositories ensured a word coverage of
97%.

The improvements brought by our eigenvalue-based mea-
sure for WSD come at the cost of an increased compu-
tational overhead. This is due to the need to exhaustively
search for the best sense combination. Nevertheless, the
promising results encourage us to further investigate strate-
gies for reducing the search space. Well-known techniques
like simulated annealing, which has already been used with
success for WSD (Cowie, Guthrie, and Guthrie 1992), are a
promising direction to investigate.

The research of disambiguation against multiple knowl-
edge bases including DBPedia, opens the way to text doc-
ument linking to external concepts and data sources. This
linking opens the opportunity to enhance text document re-
trieval, clustering and navigation in the current Web context.
In the future, we will investigate performance issues and will
work on establishing our newly proposed method for appli-
cation in the aforementioned domains.
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