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Abstract

Post-OCR technology is used to correct er-
rors in the text produced by OCR systems.
This study introduces a method for construct-
ing post-OCR synthetic data with different
noise levels using weak supervision. We de-
fine Character Error Rate (CER) thresholds for
“effective" and “ineffective" synthetic data, al-
lowing us to create more useful multi-noise
level synthetic datasets. Furthermore, we pro-
pose Self-Correct-Noise Test-Time Adaptation
(SCN-TTA), which combines self-correction
and noise generation mechanisms. SCN-TTA
allows a model to dynamically adjust to test
data without relying on labels, effectively han-
dling proper nouns in long texts and further
reducing CER. In our experiments we evaluate
a range of models, including multiple PLMs
and LLMs. Results indicate that our method
yields models that are effective across diverse
text types. Notably, the ByT5 model achieves
a CER reduction of 68.67% without relying on
manually annotated data1.

1 Introduction

The task of preserving historical data has seen a
transformative impact due to advancements in Opti-
cal character recognition (OCR) (Wei et al., 2024).
While these systems have facilitated the digitiza-
tion of historical books, they have also introduced
a new set of challenges, particularly when deal-
ing with texts involving complex layouts, unusual
typefaces, or degraded quality (Jatowt et al., 2019).
Post-OCR methods have been proposed to correct
these errors (Nguyen et al., 2021), improving the
usability of digitized texts – an important factor for
cultural analytics research and digital humanities
in general.

Recent research has framed the post-OCR task
as a Seq2Seq Neural Machine Translation (NMT)

1The code is available at https://github.com/
NikoGuan/P_OCR.

task (Amrhein and Clematide, 2018; Mokhtar et al.,
2018; Nastase and Hitschler, 2018; Hämäläinen
and Hengchen, 2019). The reliability and gener-
alization performance of NMT models is closely
tied to the quality and the volume of the training
data (Vu et al., 2020). Therefore, synthetic data
is commonly used in this area. However, most
previous work considers synthetic data with only
a single noise ratio for model training (Rijhwani
et al., 2020; Jasonarson et al., 2023; Xie and Anas-
tasopoulos, 2023), which is not consistent with real
digitized collections where quality will often vary.
Even in cases where researchers have considered
different noise ratios, this has involved conduct-
ing separate sub-experiments for each noise level
(D’hondt et al., 2017). To the best our knowledge,
there has been no attempt to merge synthetic data
with multiple different noise levels for model train-
ing, nor has anyone explored which noise levels to
merge to construct the most useful synthetic data.

In addition to the original errors that occur dur-
ing digitization, subsequent post-OCR procedures
can introduce further inaccuracies. This issue be-
comes particularly severe with proper nouns (PNs),
like personal and place names, which are more
susceptible to these post-OCR errors and are chal-
lenging to correct. This often arises either because
the PNs in the test data were not present in the train-
ing data, or because they are hard to distinguish.
For instance, in OCR text, it is unclear whether
“MarL" should be corrected to “Mark" or “Marl".
Errors like these can negatively impact downstream
tasks, such as retrieval and recommendation sys-
tems (Bazzo et al., 2020; Van Strien et al., 2020).

In response to the challenges above, in Sec-
tion 3.1 we propose a process that employs a
weakly-supervised learning approach to generate
synthetic data with varying noise levels. Further-
more, we explore how to merge synthetic data
with different noise levels to create the most use-
ful dataset for model training. In Section 3.2 we

https://github.com/NikoGuan/P_OCR
https://github.com/NikoGuan/P_OCR


evaluate a range of different models using this syn-
thetic data, achieving competitive results for post-
OCR correction on multiple benchmarks. In Sec-
tion 4.1 we also propose Self-Correct-Noise Test-
Time Adaptation (SCN-TTA) to enable the model
to better handle PNs, further improving the quality
of the output text. The experiments in Section 4
demonstrate that this method is effective across di-
verse text types and can reduce the CER by up to
68.67%.

2 Related Work

Post-OCR has evolved over many years, with sev-
eral methods leveraging multiple OCR engines
and combining their outputs to yield improved re-
sults (Lin, 2001; Lund and Ringger, 2011). Re-
cent advances involve using pre-trained models and
seq2seq architectures for error detection and correc-
tion (Nguyen et al., 2020). Amrhein and Clematide
(2018) employed both NMT and Statistical Ma-
chine Translation (SMT) models for post-OCR
tasks. Following this, Schaefer and Neudecker
(2020) introduced a two-step method that involves
detection followed by correction. An unsupervised
approach combining multiple OCR views is pro-
posed by Gupta et al. (2021). Ramirez-Orta et al.
(2022) split texts into character ngrams and com-
bine their individual corrections into the final out-
put. Other methods have involved using LSTMs
for post-processing (D’hondt et al., 2017), estab-
lishing benchmarks using pre-trained models on
niche datasets (Maheshwari et al., 2022) and us-
ing an adapted hill-climbing algorithm (Nguyen
et al., 2023). A number of recent studies have
used encoder-decoder pre-trained language mod-
els (Soper et al., 2021; Maheshwari et al., 2022;
Wolters and Van Cranenburgh, 2024; Löfgren and
Dannélls, 2024) and large language models (Boros
et al., 2024; Thomas et al., 2024).
Synthetic data can enhance model performance
across various deep learning domains (Nikolenko,
2021). In post-OCR and Grammatical Error Cor-
rection (GEC) tasks, synthetic data is mainly gen-
erated using noise injection (Izumi et al., 2003).
Work by Grundkiewicz et al. (2019) developed con-
fusion sets for each word in a corpus vocabulary,
replacing words in correct sentences at a fixed ra-
tio to generate synthetic data. Ingólfsdóttir et al.
(2023) claimed that highly-noisy text provided op-
timal training examples for error correction. Both
Krishna et al. (2018) and Davydkin et al. (2023) at-

tempted to generate images of text and then create
synthetic data with a single error level. Jasonar-
son et al. (2023), Rijhwani et al. (2020) and Xie
and Anastasopoulos (2023) injected single level
OCR errors into clean text according to their oc-
currence frequency in the corpus. D’hondt et al.
(2017) generated datasets with different noise lev-
els and trained models using a single noise ratio
corresponding to the noise level found in the test
set. Moreover, Guan and Greene (2024) mixed
data with different error ratios in the training data
and proposed a novel approach for constructing
synthetic data based on glyph similarity measures.
Weak supervision involves training models with
noisy, partial, or imprecise labels. Examples in-
clude Whisper’s robust speech recognition using
weakly supervised Transformer models (Radford
et al., 2023), and MULTIR’s relation extraction
from noisy data (Hoffmann et al., 2011). Wang
et al. (2019) demonstrated the effectiveness of weak
supervision for text classification.
Test-time adaptation refers to methods that allow
a model to dynamically adapt to test data during
inference, without the need for labeled data (Liang
et al., 2023). TTA has been applied in various tasks
such as question answering (Banerjee et al., 2021;
Ye et al., 2022, 2023; Su et al., 2023) and image
segmentation (Hu et al., 2021). This stategy is
especially useful in scenarios where the test data
distribution may differ from the training data.

3 Effective Synthetic Data

We now introduce a new approach for generating
effective synthetic data for the post-OCR task.

3.1 Data Generation with Error Levels

To address the issue of limited training data, we
extract the frequency of OCR errors from existing
data. We then insert these errors into clean text
from our domain of interest at different ratios to
create data with varying error levels. Firstly, we re-
quire two input document sets: the source data and
the target data. The source data, which consists of
pairs of noisy OCR text and corrected ground truth
(GT), serves as the source of OCR errors. These
errors are used to construct rules for our proposed
Data Generator (DG). The target data is a collec-
tion of clean texts free from OCR errors. The DG
will be used to insert OCR errors into this target
data, thereby generating the synthetic data.

In this paper, we chose the English datasets



from ICDAR2017/2019 (Rigaud et al., 2019) as our
source data, totaling 6.2 million characters. These
datasets include OCR texts aligned with GT texts
at the character level, permitting the examination
of original characters in erroneous OCR outputs.
For instance, a sample OCR input “INEVEI3" will
be aligned as “I@NEVEI3" with a corresponding
GT “I NEVE@R". The padding symbol “@" in the
source data allows us to identify which characters
have been deleted and which have been recognized
as multiple characters (strings).

We have observed that the annotations in the
ICDAR datasets are not entirely reliable. Specifi-
cally, some texts appear to be improperly aligned,
as the alignment was done using an automated pro-
cess. We could view such annotations as a form
of “imperfect” or “imprecise” labels. Therefore,
we propose adopting a weakly supervised learning
approach (Zhou, 2018). By carefully extracting
OCR errors from these noisy, misaligned datasets,
we can make use of the inherent errors and noise in
the data to augment a post OCR-correction model’s
ability to generalize to various OCR errors, because
this can increase the diversity of OCR error within
the synthetic data. We also compare the results
of not using weak supervision (i.e., filtering out
“imprecise” data from the source data) later in Ex-
periments 2 & 4. We now describe the two phases
of the DG process.

Phase 1 – DG construction. Firstly, we use the
labeled pairs of examples in the source data to com-
pute the likelihoods of individual characters being
replaced by other characters or strings during OCR
processing. This includes the likelihoods of all
characters, including spaces and punctuation, be-
ing replaced. Here, each value P (j|i) represents
the probability that character i is replaced by string
j based on the source data. Note that i and j can
be the same, corresponding to the case where, after
OCR processing, a character is mapped to itself
(i.e., it is correctly recognized). These values rep-
resent the replacement “rules” that will be used to
add OCR-like errors to the target data. We apply
these rules and then remove any padding symbols
to build synthetic text.

During the proposed process, common OCR er-
rors are simulated as follows: recognition errors,
where characters are replaced by others; insertion
errors, where characters are replaced with lengthy
strings; deletion errors, where characters are re-
placed by the padding symbol “@", which will

be removed later; and segmentation errors, where
spaces, considered as characters, are replaced by
“@", leading to word segmentation issues when
removed.
Phase 2 – DG application. Next, we apply DG to
the target data to introduce OCR errors. Here the
target data serves as the ground truth during train-
ing. In the target data, 0.03% of random words can
be replaced with the “<unk>" token, the “<unk>"
token will not be affected by DG, this is preparation
for SCN-TTA, it does not affect the performance
of general post-OCR tasks.

To generate texts with different noise levels,
we introduce the concept of an Error Level (EL),
denoted e. This involves using the probabilities
P (j|i) calculated in the previous step to calculated
the weight W (j|i) for character i being replaced
by string j, W (j|i) as a weight, controls the proba-
bility of various character replacements occurring
when generating synthetic data, such that

W (j|i)(e) =


P (j|i)

P (i|i)+e·
∑

k∈Si,k ̸=i P (k|i) , if i = j

e·P (j|i)
P (i|i)+e·

∑
k∈Si,k ̸=i P (k|i) , if i ̸= j

where Si denotes a set containing possible strings
that might replace character i. By increasing e,
the weight W (i|i) of a character being replaced by
itself will decrease, whereas the weights for it be-
ing replaced by other strings will increase, making
errors more likely.

3.2 Effective Data Threshold and Range
When generating synthetic data, a key question
relates to the extent of errors to be introduced into
clean text. The most common approach is to insert
errors at the same rate observed in the source data
(Jasonarson et al., 2023; Rijhwani et al., 2020).
However, this method has its limitations. Typically,
models trained on low-CER data perform better on
low-CER text, while models trained on high-CER
data perform better on high-CER text.

This raises the related question of whether merg-
ing data with varying CER levels can produce a
model that performs well on test collections where
documents have different CER levels. Specifically,
if data with multiple CER levels are merged, is
there a range of CER values in the training data
that results in the best overall performance across
different CER levels in test data? Additionally,
does excessive insertion of OCR errors compro-
mise the integrity of the original sentence structure
and meaning, causing the model to “overcorrect”?



To answer these questions, we undertake three
experiments. Experiment 1 examines how the CER
of training and test data affects model performance
on synthetic data. Experiment 2 validates the con-
clusions of Experiment 1 using real-world data.
Finally, Experiment 3 extends testing to include a
broader range of models and includes benchmarks
with different types of text.

3.2.1 Exp. 1: Exploration on Synthetic Data
Synthetic data allows more precise control over
CER levels, when compared to real-world data
where the error distribution is uneven. In order to
investigate the relationship between the data CER
and model performance, we used synthetic data for
both training and testing in this experiment. We
fine-tuned three transformer-based models which
have previously been shown to perform well in post-
OCR tasks (Maheshwari et al., 2022): mBARTlarge

(Tang et al., 2020), Flan-T5base (Chung et al.,
2022), ByT5base (Xue et al., 2022).
Setup. The target dataset consists of a curated set
of 50 19th-century British and Irish novels. These
are proofread full-texts sourced from Project Guten-
berg (Stroube, 2003). This corresponds to a total of
31,257,853 characters and 5,714,139 words. The
texts in the target data are segmented into chunks,
which are then randomly assigned in a 70:15:15
ratio to form the training, validation, and test sets.

For our source data, we use the English collec-
tions from ICDAR2017/2019 (Rigaud et al., 2019).
While the ICDAR data is not entirely reliable, it
still represents a useful source of weak supervision
when extracting error generation rules, as discussed
in Section 3.1. The data is divided into two equally
sized sets. The first set provides error information
for the synthetic training-validation dataset, while
the second set is used for the synthetic test dataset.
This separation ensures distinct error distributions
between the training-validation and test datasets.

We generated datasets with varying error levels,
denoting the error level for the training set as TrEL
(Training Error Level) and for the test set as TeEL
(Test Error Level). We used 13 values for TrEL
∈ [0.3, 21.0] and 8 values for TeEL ∈ [0.3, 13.0].
The detailed values and their corresponding CER
and WER are provided in Appendix A. We also
merged the training sets from all different ELs,
referring to this combined training set as merge. We
use TrCER and TrWER to represent the CER and
WER of the training set, respectively, and TeCER
and TeWER to denote the CER and WER of the

Model
TrCER

CER(CERR) TeCER
1.92 3.68 7.90 11.47 14.57 17.48 20.00 22.36

ByT5

1.03 1.28(33.3) 1.82(50.6) 4.33(45.1) 6.69(41.7) 9.40(35.8) 12.20(30.2) 14.56(27.2) 16.95(24.2)
2.37 0.87(54.6) 1.44(60.7) 3.07(61.1) 5.05(56.0) 6.91(52.9) 9.12(47.8) 11.14(44.3) 13.46(39.8)
5.44 0.89(53.8) 1.32(64.1) 2.60(67.1) 3.96(65.5) 5.46(62.8) 7.11(59.3) 8.69(56.5) 10.52(53.0)
8.02 0.94(51.2) 1.35(63.2) 2.48(68.6) 3.66(68.1) 5.01(65.8) 6.50(62.8) 7.98(60.1) 9.53(57.4)

10.33 0.98(49.0) 1.34(63.6) 2.40(69.6) 3.71(67.7) 4.80(67.3) 6.16(64.8) 7.54(62.3) 9.05(59.5)
12.45 1.19(38.3) 1.52(58.8) 2.57(67.5) 3.64(68.3) 4.88(66.7) 6.22(64.4) 7.50(62.5) 8.90(60.2)
14.39 1.07(44.3) 1.45(60.5) 2.43(69.3) 3.49(69.6) 4.67(68.2) 5.94(66.0) 7.15(64.2) 8.52(61.9)
16.21 1.11(42.2) 1.46(60.3) 2.42(69.3) 3.46(69.8) 4.58(68.7) 5.81(66.8) 7.04(64.8) 8.34(62.7)
17.91 1.15(40.3) 1.52(58.6) 2.50(68.3) 3.56(69.0) 4.68(68.0) 5.87(66.4) 7.07(64.7) 8.50(62.0)
19.52 1.19(38.0) 1.54(58.1) 2.52(68.0) 3.51(69.4) 4.64(68.4) 5.75(67.1) 6.96(65.2) 8.16(63.5)
21.02 1.24(35.3) 1.60(56.4) 2.59(67.2) 3.57(68.8) 4.66(68.0) 5.80(66.8) 7.04(64.8) 8.27(63.0)
22.49 1.28(33.3) 1.66(54.9) 2.63(66.7) 3.67(68.0) 4.76(67.5) 5.87(66.4) 7.00(65.0) 8.32(62.8)
merge 0.80(58.3) 1.23(66.6) 2.34(70.4) 3.35(70.8) 4.32(70.4) 5.52(68.4) 6.62(66.9) 8.08(63.9)

Flan-T5

1.03 0.80(58.1) 1.81(50.8) 5.82(26.3) 10.69(6.8) 13.53(7.7) 18.20(-4.1) 22.52(-12.6) 25.27(-13.0)
2.37 0.77(59.7) 1.57(57.2) 3.71(53.0) 6.69(41.7) 10.31(29.7) 13.16(24.7) 16.24(18.8) 19.60(12.4)
5.44 0.68(64.6) 1.23(66.6) 2.73(65.4) 4.63(59.7) 6.76(53.9) 9.06(48.2) 11.56(42.2) 14.33(35.9)
8.02 0.70(63.6) 1.16(68.4) 2.57(67.5) 4.11(64.1) 5.82(60.3) 7.78(55.5) 9.73(51.4) 12.06(46.1)

10.33 1.02(46.8) 1.34(63.6) 2.59(67.1) 4.38(61.8) 5.74(60.9) 7.73(55.8) 9.20(54.0) 11.33(49.4)
12.45 0.79(58.9) 1.23(66.6) 2.46(68.9) 3.80(66.9) 5.25(64.2) 6.81(61.0) 8.37(58.2) 9.96(55.5)
14.39 0.91(52.6) 1.30(64.5) 2.53(67.9) 4.07(64.6) 5.14(64.9) 6.52(62.7) 8.06(59.7) 9.78(56.3)
16.21 0.95(50.3) 1.32(64.0) 2.50(68.3) 3.76(67.3) 5.00(65.9) 6.44(63.2) 7.90(60.5) 9.38(58.1)
17.91 0.96(49.8) 1.41(61.8) 2.56(67.6) 3.75(67.3) 5.09(65.2) 6.35(63.7) 7.98(60.1) 9.35(58.2)
19.52 1.08(43.9) 1.48(59.9) 2.61(66.9) 3.73(67.5) 5.20(64.5) 6.81(61.1) 7.74(61.3) 9.08(59.4)
21.02 1.22(36.3) 1.61(56.2) 2.69(65.9) 3.85(66.4) 5.16(64.6) 6.50(62.8) 7.70(61.5) 9.12(59.2)
22.49 1.28(33.3) 1.69(54.0) 2.73(65.4) 3.97(65.4) 5.15(64.8) 6.67(61.8) 7.77(61.2) 9.18(59.0)
merge 0.61(68.2) 1.02(72.3) 2.38(69.9) 3.62(68.4) 4.91(66.3) 6.12(65.0) 7.23(63.9) 8.82(60.6)

mBART

1.03 2.69(-40.0) 4.04(-9.7) 8.03(-1.7) 12.37(-7.8) 16.46(-12.3) 21.21(-21.3) 25.00(-25.0) 28.52(-27.5)
2.37 2.66(-38.5) 4.77(-29.6) 6.71(15.0) 10.06(12.3) 13.95(4.8) 17.96(-2.8) 23.63(-18.1) 26.28(-17.5)
5.44 2.33(-21.2) 3.06(16.8) 5.19(34.3) 7.57(34.0) 9.91(32.4) 12.57(28.1) 15.99(20.0) 19.54(12.7)
8.02 2.44(-27.0) 3.10(15.8) 4.88(38.2) 6.70(41.6) 8.56(41.6) 11.38(34.9) 12.81(36.0) 15.58(30.4)

10.33 2.75(-43.0) 3.36(8.5) 4.93(37.5) 6.70(41.6) 8.38(42.8) 10.40(40.5) 12.09(39.5) 14.64(34.5)
12.45 2.74(-42.9) 3.08(16.3) 4.55(42.4) 6.21(45.9) 7.99(45.5) 10.13(42.0) 11.47(42.7) 13.38(40.2)
14.39 2.92(-52.1) 3.39(7.7) 4.87(38.3) 6.50(43.3) 8.02(45.2) 9.59(45.1) 11.97(40.1) 13.04(41.7)
16.21 3.15(-64.0) 3.57(3.0) 4.98(37.0) 6.29(45.2) 7.82(46.6) 9.34(46.6) 11.04(44.8) 12.76(42.9)
17.91 3.23(-68.2) 4.33(-17.8) 5.46(30.9) 6.67(41.9) 7.96(45.7) 9.87(43.5) 11.03(44.9) 12.68(43.3)
19.52 2.87(-49.2) 3.72(-1.3) 4.72(40.2) 6.48(43.5) 7.79(46.8) 9.14(47.7) 10.67(46.6) 12.19(45.5)
21.02 3.07(-60.0) 3.80(-3.2) 5.21(34.0) 6.85(40.3) 7.82(46.6) 9.39(46.3) 11.03(44.9) 12.17(45.7)
22.49 3.44(-79.0) 3.91(-6.2) 5.14(35.0) 6.63(42.2) 7.82(46.6) 9.73(44.3) 10.85(45.8) 12.18(45.6)
merge 2.01(-4.68) 3.00(18.5) 4.24(46.3) 5.98(47.9) 7.60(47.8) 8.73(50.1) 10.00(50.0) 11.87(46.9)

Table 1: Scores for CER and CERR across all models
for different error levels in the training (rows) and test
(columns) sets. The best results for each model are
underlined, while the best overall scores for a given test
set error level (column) are highlighted in bold. merge
does not participate in comparisons with a single EL.

test set. We fine-tuned three pre-trained models
across 14 (13+merge) datasets and tested them on
8 TeEL datasets. Detailed training parameters are
provided in Appendix A.

To measure performance, we consider CER,
WER, Character Error Rate Reduction (CERR),
and Word Error Rate Reduction (WERR). The lat-
ter two measures are defined as:

CERR = 1− CERpost

CERinit
WERR = 1− WERpost

WERinit

Here CERinit and WERinit refer to the original
CER and WER values, respectively. CERpost and
WERpost are the CER and WER after processing,
respectively.
Discussion. Table 1 reports the CER performance
of all models, each trained on different TrEL
datasets and evaluated on multiple TeEL datasets.
Further WER results are provided in Table 7 in
Appendix A. We see that the ByT5 model aligns
closely with the T5 model in terms of CERR and
WERR, significantly outperforming the mBART
model. ByT5 achieves the best CERR on most
datasets, consistently exceeding 65%. Meanwhile,
the Flan-T5 model often outperforms ByT5 in
terms of WERR, averaging around 75%. Mod-
els trained on the merge dataset produce stronger
performance across all TeEL datasets.

From Table 1, we observe that, when not consid-
ering the merge set, models trained on single EL
datasets with CER > 21.02 rarely achieve strong
performance on test sets. This demonstrates that
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Figure 1: 24 data points from 3 models marked with dis-
tinct colors, with the Optimal Alignment Curve (OAC)
represented by a black dashed line.

synthetic data with excessive OCR errors results in
a decline in model performance.

Based on the observations above, we propose
an Optimal Alignment Curve (OAC), with CER as
the primary metric. This curve helps to identify
the optimal training data for test data with diverse
CER levels when considering single error level
datasets. Specifically, the OAC indicates which
training dataset with a specific CER (e.g., a dataset
with a CER of 5%) is most effective for testing
datasets that have different CER levels. However,
the OAC is not intended to select the training data
CER based on the test data CER. Rather, its primary
purpose is to estimate the CER threshold for “ef-
fective and “ineffective" training data, determining
the CER range of the synthetic data in the merged
dataset for subsequent use.

To calculate the OAC, we analyzed the perfor-
mance of three models (mBART, Flan-T5, and
ByT5) across various TrEL and TeEL levels. For
each TeEL, we identified the best-performing TrEL
for each model. This resulted in 24 data points (i.e.,
8 TeEL levels × 3 models). We then plotted these
data points and performed a quadratic polynomial
regression to fit the OAC. The peak of this curve
represents the threshold between “effective" and
“ineffective" training data. The resulting quadratic
polynomial regression is given by

f(x) =

{
1.01 + 1.68x− 0.04x2 if 0 < x ≤ 22.71

20.1 if x > 22.71

where x represents the CER of the test set, and f(x)
denotes the empirically-observed optimal CER of
the training set. The 24 data points, alongside
the corresponding OAC, are illustrated in Figure 1.
This indicates that the empirically observed CER

threshold delineating between “effective" and “in-
effective" is approximately 20.1.

3.2.2 Exp. 2: Validation on Real Data
We now evaluate the performance of models trained
on synthetic datasets when tested on real-world
datasets. Additionally, we aim to verify whether
the definitions of “effective" and “ineffective" syn-
thetic data from Exp. 1 are applicable in real-world
scenarios. This evaluation is conducted on the RE-
TAS benchmarks (Yalniz and Manmatha, 2011),
which consist of 100 classic novels from the 18th
and 19th centuries. These were processed using
the Abbyy FineReader OCR engine, resulting in a
CER of 6.64% and a WER of 20.83%. The novels
share the same domain as the 50 novels used for
training, but there is no overlap.
Setup. We select three models for comparison:
ByT5-base (Xue et al., 2022), which performed
well in our previous experiments; Transformer-
big (Vaswani et al., 2017); an ngram-based model
(Ramirez-Orta et al., 2022) from the literature,
which achieved SOTA performance on multiple
language datasets of the ICDAR dataset. Addition-
ally, we test three methods for generating synthetic
data: random generation (Random), non-weak su-
pervision (Non-WeakSup), and weak supervision
(WeakSup). Random refers to adding OCR errors
through random substitutions, insertions, and dele-
tions. The Non-WeakSup, common in post-OCR
and Grammatical Error Correction (GEC) tasks (Ja-
sonarson et al., 2023; Ingólfsdóttir et al., 2023), in-
volves extracting error distributions from correctly-
annotated datasets and then inserting these errors
into clean text to generate synthetic data. In our
case, we filtered out sentence pairs from the IC-
DAR dataset with CER >50% to obtain correctly
annotated data. WeakSup follows a similar process,
but does not filter out high-CER sentences.

We create datasets with different degrees of er-
rors, represented by [n,m], indicating that each
dataset merged seven synthetic datasets with CERs
ranging from n to m. Random used [1, 20.1], while
WeakSup and Non-WeakSup used [1, 10], [1, 20.1],
and [1, 30]. Specifically, [1, 10] represents all “ef-
fective" data but not the full range; [1, 20.1] exactly
covers the effective range; [1, 30] covers the effec-
tive range and includes “ineffective" data.
Discussion. From the results in Table 2, we see that
both ByT5 and Transformer models outperform
the ngram-based model. Models trained with the
dataset [1, 20.1] demonstrate better performance



Model
Data Random Non-WeakSup WeakSup

[1,20.1] [1,10] [1,20.1] [1,30] [1,10] [1,20.1] [1,30]

ByT5base 3.47 2.55 2.51 2.75 2.52 2.46 2.81
Transformerbig 4.06 3.18 3.11 3.25 3.13 3.09 3.50
Ramirez-Orta et al. (2022) 4.43 5.08 4.10 4.43 5.00 4.12 4.44

Table 2: CER for the RETAS datasets after correction
using different models, trained on different synthetic
data. Original is 6.64%.

than those trained with [1, 10] and [1, 30], suggest-
ing the applicability of “effective" and “ineffec-
tive" synthetic data thresholds derived from the
OAC in real-world scenarios. Models trained on
[1, 10] perform well on texts with a CER <10, but
cannot yield high performance with higher CER
values. Although this range uses “effective" data,
it does not cover the full “effective range", since
the RETAS dataset also contains higher CER sen-
tences. Conversely, training with [1, 30], which in-
cludes “ineffective" data above CER 20, may cause
overcorrection and a decline in performance. So
[1, 20.1] which exactly covers the “effective range”,
results in the best performance.

We also observe the slight superiority of Weak-
Sup over Non-WeakSup. This can be attributed to
the fact that, while the Non-WeakSup method ac-
curately extracts the error distribution of a specific
OCR engine, the OCR texts requiring correction
might originate from a different system. In contrast,
the WeakSup method enhances the model’s robust-
ness by enabling it to learn from a broader array of
error types, even those from incorrect annotations,
thereby improving its capability to correct texts
from different OCR systems.

3.2.3 Exp. 3: Tests on Further Data
We now extend our experiments to evaluate the ef-
fectiveness of synthetic data across source different
datasets and models.
Setup. We generate [1, 20.1] training data by in-
serting OCR errors into the GT of the training data
from these benchmarks using the WeakSup method,
without using their actual OCR text for training.
The benchmarks include Overproof-2, Overproof-3
(Evershed and Fitch, 2014), TCP (Dong and Smith,
2018) and BLN600 (Booth et al., 2024). Since the
original authors did not split the Overproof-2 and
Overproof-3 datasets, we conduct a 5-fold cross-
validation on these datasets. Details for the datasets
are given in Table 3.

Baselines for comparison include the CER and
WER values from the original benchmark pa-
pers, the Hunspell spellchecker (Ooms, 2018), and

Dataset Type Size Year CER WER
Overproof-2 Newspaper 49,000 words 1842–1954 8.54% 25.71%
Overproof-3 Newspaper 18,000 words 1871–1921 10.91% 27.65%
TCP Book 934 books 1500–1800 10.59% 30.55%
BLN600 Newspaper 294,239 words 1800–1900 8.40% 37.27%

Table 3: Summary of Datasets used in Exp. 3.

one-shot results from Llama213B (Touvron et al.,
2023) and GPT-4o. We trained or fine-tuned the
following models: those proposed by Ramirez-
Orta et al. (2022) and Schaefer and Neudecker
(2020), mBARTlarge, ByT5base, Flan-T5base and
Llama213B . For Llama213B , we used LoRA (Hu
et al., 2022) for instruction-tuning. The training pa-
rameters for each model, as well as the prompts and
data formats for LLM are provided in Appendix B.

Discussion. From the results in Table 4, we see that
the PLMs ByT5 and Flan-T5 significantly enhance
OCR outputs across most datasets, even without
using real OCR text in training, reducing CER by
over 60% when data is sufficient. This demon-
strates that in post-OCR tasks, robust models can
be trained with “effective" synthetic data, without
the need for a manually annotated training set. Our
tests also show that LLMs achieve ≈40% reduc-
tion in CER with one-shot performance, and up
to 50% after LoRA fine-tuning. Furthermore, the
CER and WER values achieved by LMs fine-tuned
with purely synthetic data generally surpass those
reported in the original benchmark papers. The
methods of the Schaefer and Neudecker (2020) and
Ramirez-Orta et al. (2022) models lag behind those
of the PLMs and LLMs. We consider the ByT5
model to be the most suitable for post-OCR tasks
and focus on this in our next experiment.

Model Overproof-2 Overproof-3 TCP BLN600

CER WER CER WER CER WER CER WER
None 8.54 25.71 10.91 27.65 10.59 30.55 8.40 37.27
Origin 7.10 16.67 5.63 12.62 4.07 9.79 3.82 ***
Hunspell 6.70 15.89 6.37 15.01 7.28 15.26 6.65 21.45
GPT-4o (one-shot) 5.75 13.27 5.87 13.43 6.04 12.21 4.85 16.67
Llama2 (one-shot) 5.98 14.23 6.02 14.02 6.23 12.78 5.34 19.21
Schaefer and Neudecker, 2020 7.29 17.48 9.23 22.27 8.33 23.45 6.34 20.13
Ramirez-Orta et al., 2022 7.66 17.24 8.87 20.34 7.01 19.25 6.11 19.95
mBART 6.27 15.32 7.47 17.87 5.55 13.2 5.29 16.43
ByT5 4.98 12.61 5.50 14.01 3.57 9.04 3.36 10.24
Flan-T5 5.16 12.55 5.61 13.73 3.75 9.80 3.48 10.56
Llama2 (instruction-tuning) 5.36 14.87 5.44 12.77 5.24 13.23 3.96 15.37

Table 4: Performance comparison of models in terms of
CER and WER across four datasets. Highlighted values
indicate the best performance per metric for each dataset.
“None" indicates the baseline without correction. “Ori-
gin" refers to values from the original benchmark papers.
“***" denotes values not disclosed.
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Figure 2: The 7-step process encompasses extracting PNs and its context, masking PNs and repairing contexts, and
using this refined data for a second round of fine-tuning. PNs and their contexts are extracted (Step 1), masked (Step
2), and partially repaired using a previously fine-tuned model (Step 3-4). This repaired text is then used to generate
synthetic data (Step 5), which informs a second round of fine-tuning (Step 6) before final full-text correction (Step
7). We use color to indicate the condition of the text: red for noisy and blue for clean.

4 Self-Correct-Noise Test-Time
Adaptation

In tasks such as GEC and translation, models often
struggle with rare words, like proper nouns, that
appear in the training data, which impacts their per-
formance on these words (Sutskever et al., 2014;
Bahdanau et al., 2016). Common solutions include
data augmentation, generating new synthetic sen-
tences with rare words (Fadaee et al., 2017; Ten-
nage et al., 2018), or aligning rare words to their
sources and then translating them with a word-level
model (Yuan and Briscoe, 2016). Although these
methods can help the model to learn rare words
in the training data, they often fail to adapt to the
distribution of the test data. In typical translation
tasks, each data point contains limited information,
whereas in post-OCR tasks, the data often consists
of longer texts, like novels. This potentially allows
us to use text from the test data to improve model
performance.

4.1 Method

We propose Self-Correct-Noise Test-Time Adap-
tation (SCN-TTA) to better handle PNs in the test
data or real-world applications. A key requirement
here is to correct OCR errors in PNs, while preserv-
ing correctly spelled ones. Our method is primarily
designed for longer texts, such as novels which
frequently appear in historical collections (Leavy
et al., 2019).

First, we need a pre-trained Seq2Seq model,
such as ByT5 (Xue et al., 2022), and conduct an
initial round of fine-tuning using synthetic data
from the same domain as the text to be corrected,
converting it into a post-OCR model.

Before we correct full texts, the post-OCR model

undergoes SCN-TTA, focusing on the text’s con-
tent, especially the PNs. This involves a second
round of fine-tuning where the model self-corrects
sentences from text while initially ignoring PNs.
The data generator then uses these self-corrected
sentences to create new synthetic data for further
fine-tuning. We now explain each step of the full
workflow as shown in Figure 2.

Step 1: For further fine-tuning, we require clean
PNs and their contexts which may contain OCR
errors. We introduce the Word-Based Text Extrac-
tor component at this stage. Initially, this com-
ponent uses the BookNLP suite (Bamman et al.,
2014) to extract all words marked as PROP (proper
noun) from the full text of a given text B (Hamdi
et al., 2020). Meanwhile, the Text Extractor iden-
tifies words that did not appear in the first round
of fine-tuning, but do appear in the text B. We
then remove words from these two groups with
frequency < (text length of B)/200000. This fre-
quency threshold, determined based on our exper-
imental observations, effectively filters out words
containing OCR errors, leaving behind the PNs of
B. Finally, we extract 80 words of context for each
PN as text chunks. Since our model’s maximum
sequence length is 512, 80 words will not exceed
this upper limit.

Step 2: Text Extractor outputs multiple text chunks,
each containing one or more clean PNs and the
surrounding text (with OCR errors). The Word
Masker converts these PNs into “<unk>".

Step 3: We use the model, fine-tuned in the first
round, to correct the chunks from Step 2. The main
goal is to correct the text around the PNs, as the
model learns to retain the “<unk>" tokens during
the initial fine-tuning (Section 3.1, Phase 2). This



represents a self-correction.
Step 4: The Word Restorer component changes
the “<unk>" token back to the original PNs. In this
way, we obtain clean sentences, which will be used
to generate an effective synthetic dataset for the
second round of fine-tuning.
Step 5: Applying the DG, we use the clean text
from Step 4 to generate synthetic text with varying
CERs 7 times within the effective range of [1, 20.1],
and then merge them. In this step, PNs are also in-
serted with various OCR errors, allowing the model
to learn to correct PNs containing OCR errors.
Step 6: Based on the synthetic data produced from
text B, we perform a second round of fine-tuning
on the model that has been fine-tuned in the first
round to help the model learn the content of B and
perform TTA. The parameters are in Appendix C.
Step 7: Finally, we apply the fine-tuned model
from Step 6 to perform full-text correction on B.

4.2 Exp. 4: Ablation Study and SCN-TTA

We now conduct an ablation experiment to investi-
gate the effects of multi-noise level training, weak
supervision, and the SCN-TTA method from Sec-
tion 4.1. We focus on CER, WER, and handling
PNs. We generate synthetic training data in differ-
ent ways to fine-tune the model, then apply SCN-
TTA to improve the identification of PNs.
Setup. Using the 50 clean texts from Exp. 1, we
generated three synthetic training datasets: Single,
Multi, and MultiW. “Single" indicates datasets gen-
erated using only TrEL 5.0, "W" indicates the use
of weak supervision, and the absence of "W" indi-
cates that weak supervision was not used (filtering
out “imprecise" data from the source data). See
Appendix C for details on the datasets. Testing
is performed on the RETAS dataset, previously
described in Exp. 2. In this experiment, we pri-
marily test the ByT5 model, as it has shown good
performance in previous experiments and similar
tasks (Maheshwari et al., 2022; Jentoft, 2023). As
baselines we consider Llama2-13B (Touvron et al.,
2023) and Hunspell (Ooms, 2018).

We introduce two additional metrics in this ex-
periment – Correct Word Retention Rate (CWRR)
and Incorrect Word Correction Rate (IWCR):

CWRR =
CC

CC + CI
IWCR =

IC

II + IC

Here CC and CI denote the number of PNs cor-
rectly recognized in the OCR output but correctly

retained and incorrectly altered after OCR correc-
tion, respectively. IC and II represent the number
of PNs incorrectly recognized in the OCR output
but correctly and incorrectly altered post OCR cor-
rection, respectively.
Discussion. The results in Table 5 again validate
the conclusion from Exp. 1 and Exp. 2 – using
weak supervision to generate synthetic data with
multiple noise levels enhances model performance.

Training ByT5 with a single noise level can re-
duce the CER from 6.64 to 2.78, whereas multi-
noise training further reduce it to 2.51. Applying
weak supervision brings the CER down to 2.46. Ap-
plying SCN-TTA to weak supervision multi-noise
training further improves performance, reducing
CER to 2.08, and boosting CWRR to 0.887 and
IWCR to 0.734. The SCN-TTA process takes ap-
proximately 2-5 minutes per book, significantly
increasing the probability of correctly handling
PNs. Llama reduces CER and WER less effec-
tively than ByT5, but its CWRR and IWCR are
notably high. We suspect this is due to benchmark
data contamination (Xu et al., 2024), as Llama’s
pre-training data likely includes content from the
RETAS dataset, but in real-world applications, the
text requiring correction is often not widely cir-
culated online and unlikely to be in pre-training
data. Therefore, Llama’s performance in handling
PNs might not be as good as observed in this ex-
periment. The performance improvement of the
Llama model after instruction-tuning is mainly due
to more stable output formatting.

Samples of corrections produced by the ByT5
model, combined with weakly-supervised multi-
noise training, are provided in Figure 4 in Appendix
C. The results show that this combination yields
strong correction capabilities.

Training Strategy WER↓ CER↓ CWRR↑ IWCR↑

None 20.8 6.64 - -
Hunspell 13.8 3.73 0.822 0.433
Llama (one-shot) 16.8 3.95 0.942 0.763
Llama + SCN-TTA 11.2 3.21 0.945 0.798
Single 10.8 2.78 0.736 0.377
Multi 9.10 2.51 0.695 0.441
MultiW 8.54 2.46 0.711 0.458
MultiW + SCN-TTA 6.68 2.08 0.887 0.734

Table 5: Comparison of results on the RETAS dataset.
Single denotes training with one OCR error level, while
Multi refers to using multiple error levels. “Llama +
SCN-TTA" refers to instruction-tuning using data gen-
erated by SCN-TTA.



5 Conclusion

In this paper, we explored how to generate the most
effective synthetic data for post-OCR correction
tasks. Our experiments show that using weak su-
pervision and effective synthetic data with multiple
noise levels can reduce the Character Error Rate
of OCR texts by 62.95% when used in conjunc-
tion with the ByT5 model. Additionally, we have
demonstrated that, by incorporating a novel test-
time adaptation approach SCN-TTA, we can im-
prove the model’s ability to handle to handle proper
nouns, leading to a 68.67% reduction in CER.

Limitations

We observe that the efficacy of SCN-TTA is re-
duced in texts with high OCR errors and shorter
texts. In some cases it also struggles to reliably
repair short PNs. The NMT model often fails to
correct numerical errors in noisy text, a common
issue across correction models. It also occasionally
mishandles paired punctuation marks, such as quo-
tation marks and parentheses. This paper focuses
solely on the post-OCR task for English and does
not present results for other languages, which we
intend to investigate in future work.
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A Details for Experiment 1
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learning rate was 5e-4, and the dropout rate was 0.2.
We fine-tuned the models for 8 epochs using fp16
precision. The Adam optimizer was used with de-
fault parameters. The experiments were conducted
on A100 and 4090 GPUs.

B Details for Experiment 3
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TrEL TrCER TrWER
0.3 1.03% 6.87%
1.0 2.37% 13.12%
3.0 5.44% 26.00%
5.0 8.02% 35.49%
7.0 10.33% 43.03%
9.0 12.45% 49.28%

11.0 14.39% 54.60%
13.0 16.21% 59.15%
15.0 17.91% 63.09%
17.0 19.52% 66.57%
19.0 21.02% 69.22%
21.0 22.49% 72.42%

merge 12.60% 46.57%

(a) Training set

TeEL TeCER TeWER
0.3 1.92% 10.87%
1.0 3.68% 18.79%
3.0 7.90% 35.19%
5.0 11.47% 46.91%
7.0 14.57% 55.91%
9.0 17.48% 62.92%
11.0 20.00% 68.53%
13.0 22.36% 73.31%

(b) Test set

Table 6: Comparison of the text quality in the synthetic
training and test sets, for different error levels, as mea-
sured using CER and WER. We use TrCER and TrWER
to represent the CER and WER of the training set, re-
spectively, and TeCER and TeWER to denote the CER
and WER of the test set.

rate of 1e-4, and carried out training over 10 epochs.
The model had a window size of 20, used beam
search for decoding, and applied uniform weight-
ing. For the Schaefer and Neudecker (2020) model,
the Detector Model featured a 3-layer structure
with a hidden size of 512. It underwent training for
138 epochs, using a batch size of 200, a dropout
rate of 0.2, and a learning rate of 1e-4. The Correc-
tion Model was trained for 800 epochs, employing
the teacher forcing technique at a ratio of 0.5, with
a batch size of 200, a dropout rate of 0.2, and a
learning rate of 1e-4. For the mBART, ByT5, and
Flan-T5 models, the batch size was set to 4, the
learning rate was 5e-4, and the dropout rate was
0.2. we fine-tuned the models for 8 epochs using
fp16 precision. The Adam optimizer was used with
default parameters.

Figure 3 illustrates the design of the prompt

Model
TrWER

WER(WERR) TeWER
10.87 18.79 35.19 46.91 55.91 62.92 68.53 73.31

ByT5

6.87 5.09(53.2) 8.08(57.0) 16.24(53.9) 23.90(49.1) 31.73(43.3) 38.92(38.2) 45.28(33.9) 51.53(29.7)
13.12 4.31(60.4) 6.45(65.7) 11.99(65.9) 17.55(62.6) 22.83(59.2) 28.43(54.8) 33.42(51.2) 38.81(47.1)
26.00 4.31(60.4) 5.85(68.9) 9.78(72.2) 13.61(71.0) 17.36(68.9) 21.14(66.4) 24.79(63.8) 28.88(60.6)
35.49 4.48(58.8) 5.90(68.6) 9.27(73.6) 12.47(73.4) 15.71(71.9) 18.99(69.8) 22.10(67.8) 25.48(65.3)
43.03 4.65(57.2) 5.92(68.5) 9.00(74.4) 12.59(73.2) 14.89(73.4) 17.94(71.5) 20.70(69.8) 24.16(67.1)
49.28 5.39(50.5) 6.43(65.8) 9.51(73.0) 12.12(74.2) 14.96(73.2) 17.87(71.6) 20.42(70.2) 23.23(68.3)
54.60 4.99(54.2) 6.21(67.0) 9.02(74.4) 11.66(75.1) 14.37(74.3) 17.02(73.0) 19.46(71.6) 22.11(69.8)
59.15 5.09(53.1) 6.27(66.6) 9.00(74.4) 11.54(75.4) 14.07(74.8) 16.55(73.7) 19.02(72.2) 21.52(70.6)
63.09 5.24(51.8) 6.44(65.7) 9.14(74.0) 11.70(75.1) 14.20(74.6) 16.61(73.6) 18.97(72.3) 21.52(70.6)
66.57 5.36(50.7) 6.51(65.4) 9.20(73.9) 11.58(75.3) 14.00(74.9) 16.28(74.1) 18.65(72.8) 20.93(71.5)
69.22 5.47(49.7) 6.75(64.1) 9.40(73.3) 12.01(74.4) 14.25(74.5) 16.36(74.0) 18.50(73.0) 20.97(71.4)
72.42 5.68(47.7) 6.86(63.5) 9.48(73.1) 11.87(74.7) 14.20(74.6) 16.44(73.9) 18.57(72.9) 20.97(71.4)
merge 4.20(61.4) 5.45(71.0) 8.63(75.5) 11.12(76.3) 13.59(75.7) 15.93(74.7) 18.32(73.3) 20.85(71.6)

Flan-T5

6.87 3.83(64.8) 7.14(62.0) 17.31(50.8) 28.64(39.0) 37.93(32.2) 49.35(21.6) 58.76(14.3) 65.30(10.9)
13.12 3.78(65.2) 6.10(67.5) 12.07(65.7) 18.66(60.2) 25.85(53.8) 32.34(48.6) 38.83(43.3) 45.50(37.9)
26.00 3.18(70.7) 5.01(73.3) 9.02(74.4) 13.43(71.4) 17.69(68.4) 22.65(64.0) 26.64(61.1) 32.01(56.3)
35.49 3.25(70.1) 4.75(74.7) 8.53(75.8) 12.03(74.4) 15.48(72.3) 19.36(69.2) 23.02(66.4) 27.26(62.8)
43.03 4.12(62.1) 5.27(72.0) 8.63(75.5) 12.08(74.3) 15.27(72.7) 19.29(69.3) 22.02(67.9) 25.29(65.5)
49.28 3.36(69.1) 4.82(74.3) 8.00(77.3) 10.97(76.6) 14.20(74.6) 17.17(72.7) 19.97(70.9) 22.89(68.8)
54.60 3.85(64.6) 4.99(73.5) 8.14(76.9) 11.41(75.7) 13.89(75.2) 16.66(73.5) 19.45(71.6) 22.38(69.5)
59.15 3.94(63.7) 5.19(72.4) 8.23(76.6) 11.10(76.3) 13.70(75.5) 16.52(73.7) 19.01(72.3) 21.77(70.3)
63.09 3.94(63.7) 5.52(70.6) 8.35(76.3) 11.24(76.0) 13.95(75.1) 16.30(74.1) 19.11(72.1) 21.79(70.3)
66.57 4.26(60.8) 5.48(70.8) 8.41(76.1) 11.04(76.5) 13.59(75.7) 17.87(71.6) 18.63(72.8) 21.20(71.1)
69.22 4.65(57.2) 5.99(68.1) 8.76(75.1) 11.26(76.0) 13.64(75.6) 18.18(71.1) 19.19(72.0) 21.04(71.3)
72.42 4.79(55.9) 6.10(67.5) 8.83(74.9) 11.33(75.8) 13.81(75.3) 17.90(71.6) 18.54(72.9) 21.23(71.1)
merge 3.11(71.4) 4.43(76.4) 7.74(78.0) 10.22(78.2) 13.02(76.7) 15.98(74.6) 18.12(73.6) 20.97(71.4)

mBART

6.87 6.82(37.3) 10.80(42.5) 21.20(39.7) 30.07(35.9) 38.33(31.4) 46.36(26.3) 52.83(22.9) 58.57(20.1)
13.12 6.60(39.3) 9.77(48.0) 16.89(52.0) 23.59(49.7) 30.91(44.7) 37.53(40.4) 46.16(32.6) 50.11(31.6)
26.00 6.20(43.0) 8.32(55.7) 13.30(62.2) 18.33(60.9) 23.13(58.6) 27.81(55.8) 33.30(51.4) 38.00(48.2)
35.49 6.54(39.8) 8.39(55.4) 12.73(63.8) 16.80(64.2) 20.55(63.2) 25.06(60.2) 28.36(58.6) 32.48(55.7)
43.03 7.06(35.1) 8.74(53.5) 12.50(64.5) 16.17(65.5) 19.59(65.0) 23.81(62.2) 26.48(61.4) 30.86(57.9)
49.28 6.94(36.2) 8.22(56.2) 11.92(66.1) 15.44(67.1) 18.98(66.1) 22.17(64.8) 25.18(63.3) 28.56(61.0)
54.60 7.04(35.2) 8.41(55.3) 12.14(65.5) 15.39(67.2) 18.60(66.7) 21.63(65.6) 25.35(63.0) 27.83(62.0)
59.15 7.67(29.4) 8.92(52.5) 12.34(64.9) 15.29(67.4) 18.31(67.3) 21.17(66.4) 24.16(64.7) 26.95(63.3)
63.09 7.88(27.6) 9.74(48.2) 12.69(63.9) 15.85(66.2) 18.45(67.0) 21.76(65.4) 24.11(64.8) 27.08(63.1)
66.57 7.46(31.4) 8.97(52.3) 12.06(65.7) 15.15(67.7) 17.92(68.0) 20.91(66.8) 23.49(65.7) 26.08(64.4)
69.22 8.13(25.2) 9.54(49.2) 12.56(64.3) 15.34(67.1) 18.28(67.3) 21.27(66.2) 23.71(65.4) 25.95(64.6)
72.42 8.56(21.2) 9.89(47.4) 12.85(63.5) 15.51(66.9) 18.19(67.5) 21.44(65.9) 23.56(65.6) 26.02(64.5)
merge 5.97(45.1) 7.95(57.7) 11.34(67.8) 14.59(68.9) 17.52(68.7) 19.86(68.4) 23.07(66.3) 25.77(64.8)

Table 7: Scores for WER and WERR across all models
for different error levels in the training (rows) and test
(columns) sets. The best results for each model are
underlined, while the best overall scores for a given test
set error level (column) are highlighted in bold. merge
does not participate in comparisons with a single EL.

used for the post-OCR LLM one-shot experiment.
Llama2 instruction-tuning follows the Alpaca for-
mat (Taori et al., 2023).

Figure 3: The one-shot prompt provided to LLMs when
performing post-OCR correction.

C Details for Experiment 4

For SCN-TTA, the second round of fine-tuning
training parameters were set to 16 epochs, a learn-
ing rate of 5e-2, gradient accumulation every 16
steps, a batch size of 4 per device, and a dropout
rate of 0.1. Post-OCR correction samples from the
ByT5 model fine-tuning with MultiW are provided
in Figure 4.



Figure 4: Post-OCR correction samples from the ByT5 model with weak supervision and multi-noise training.
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