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Abstract

This paper explores the application of synthetic
data in the post-OCR domain on multiple fronts
by conducting experiments to assess the im-
pact of data volume, augmentation, and syn-
thetic data generation methods on model per-
formance. Furthermore, we introduce a novel
algorithm that leverages computer vision fea-
ture detection algorithms to calculate glyph
similarity for constructing post-OCR synthetic
data. Through experiments conducted across
a variety of languages, including several low-
resource ones, we demonstrate that models like
ByT5 can significantly reduce Character Error
Rates (CER) without the need for manually an-
notated data, and our proposed synthetic data
generation method shows advantages over tra-
ditional methods, particularly in low-resource
languages1.

1 Introduction

Digital libraries, like the Internet Archive, offer
a vast collection of historical and culturally im-
portant books in image formats, including works
written in low-resource and endangered languages.
However, their image-only format limits content
accessibility, hindering the use of these essential
resources. Therefore, Optical Character Recogni-
tion (OCR) technologies are evidently useful in this
context. However, OCR outputs frequently contain
errors, particularly when working with texts fea-
turing complex styles, archaic fonts, or unconven-
tional layouts. These errors may include character
recognition mistakes, formatting issues, and hy-
phenation problems, which are particularly promi-
nent when dealing with low-resource languages
(Ignat et al., 2022). Poor quality OCR can reduce
the usefulness of these digital texts, adversely af-
fecting downstream tasks (Linhares Pontes et al.,
2019; Koudoro-Parfait et al., 2021).

1Code and data are available at https://github.com/
NikoGuan/P_OCR

Post-OCR correction is crucial for multiple rea-
sons, including cultural heritage preservation (Jarl-
brink and Snickars, 2017), expanding the accessi-
bility of knowledge and information (Bazzo et al.,
2020), and supporting further downstream tasks in
cultural analytics (Stubbs, 1996). Additionally, ac-
curate historical text data is extremely important for
training large language models (LLMs) (Bubeck
et al., 2023), which require high-quality data to
improve their ability to handle complex queries,
especially those involving history and culture.

Crowdsourcing has been the primary approach
to acquire post-OCR training data in this domain
(Clematide et al., 2016; Richter et al., 2018; Ma-
heshwari et al., 2022). While this can provide
highly accurate training data, the process is often
time consuming and expensive. With the advent of
Transformer architecture and attention mechanisms
(Vaswani et al., 2017), deep learning models have
emerged as the standard approach for post-OCR
tasks. These models require large amounts of data
for training. Thus, synthetic data has been increas-
ingly adopted in this context. (D’hondt et al., 2017;
Davydkin et al., 2023; Jasonarson et al., 2023).
However, most existing literature on generating
synthetic data relies on additional existing data for
generation, and no comprehensive comparison has
been made between different methods to under-
stand how the synthetic data generated in various
ways affects post-OCR performance.

To address these issues, this paper explores the
impact of data volume and data augmentation meth-
ods on the performance of post-OCR models. We
examine several common methods for creating syn-
thetic data in the post-OCR domain and propose a
novel method based on feature detection algorithms
from computer vision to calculate glyph similar-
ity for synthetic data construction. We conduct
experiments on eight languages, including several
low-resource languages, achieving significant CER
reductions ranging from 12.41% to 48.18%.

https://github.com/NikoGuan/P_OCR
https://github.com/NikoGuan/P_OCR


2 Related Work

Popular OCR systems include the Google Vision
API OCR system (Fujii et al., 2017) and the Tesser-
act OCR engine (Smith, 2007). Jatowt et al. (2019)
performed statistical analysis on the types of errors
commonly produced by OCR systems.

Post-OCR correction, while often overlooked, is
an important NLP task. Lexical approaches to post-
correction concentrate on character and word level
inaccuracies, primarily employing dictionaries and
heuristic rules. Bassil and Alwani (2012) exploited
Google’s search suggestions for context-based cor-
rections, circumventing the need for exhaustive
dictionaries. Strategies specific to certain domains,
such as those proposed by Furrer and Volk (2011),
Estrella and Paliza (2014), and Kettunen (2016),
highlight the necessity of tailored dictionaries for
texts that possess unique features, like historical
typefaces. Wemhoener et al. (2013) focused on
aligning and merging outputs from various scans,
including those from different editions, to rectify
errors. Recent studies have framed post-OCR tasks
as Seq2Seq tasks, with researchers applying both
Statistical Machine Translation (SMT) and Neu-
ral Machine Translation (NMT) models (Amrhein
and Clematide, 2018). Nguyen et al. (2020) and
Soper et al. (2021) employed BERT (Devlin et al.,
2018) and BART (Lewis et al., 2019) models, re-
spectively. Maheshwari et al. (2022) conducted a
comparison between pre-trained models and tra-
ditional Seq2Seq models, with their findings in-
dicating that pre-trained models like ByT5 (Xue
et al., 2022) outperform the conventional models.
Ramirez-Orta et al. (2022) segmented documents
into character n-grams, before aggregating their
corrections into the final output via majority vot-
ing (Lam and Suen, 1997), essentially acting as an
ensemble of sequence models.

Data is fundamental to the success of deep learn-
ing, as an increasing amount of research is directed
towards leveraging data-driven strategies. These
strategies aim to significantly improve model per-
formance by optimizing data usage, rather than
modifying the underlying model structure (Tarafdar
et al., 2019; Mazumder et al., 2022). These efforts
often involve generating large quantities of syn-
thetic data (Choi and Park, 2023), involving data
manipulation measures like filtering (Koehn et al.,
2020), data augmentation (Shorten and Khoshgof-
taar, 2019; Li et al., 2022), and noise injection
(Izumi et al., 2003). Such synthetic data has been

widely used in various NLP tasks, such as gram-
matical error correction (Ingólfsdóttir et al., 2023),
language identification (Ahmadi et al., 2023), ques-
tion answering (Puri et al., 2020), and named entity
recognition (Liu et al., 2021).

For the task of text denoising, the primary
method for constructing synthetic data is noise in-
jection (Izumi et al., 2003). This technique involves
inserting errors into clean text to generate training
data pairs. D’hondt et al. (2017) added artificial
OCR errors into sentences using a random process,
while Jasonarson et al. (2023) focused on the low-
resource Icelandic language for post-OCR tasks.
The authors extracted OCR errors from real digi-
tised documents and inserting them into clean text
in similar proportions. Grundkiewicz et al. (2019)
analyzed real data to create replacement sets for
each word. Davydkin et al. (2023) adopted a differ-
ent approach, developing a system to generate hand-
written image data which were then processed with
OCR. The resulting OCR outputs and the original
texts were subsequently used to train a T5 model
(Raffel et al., 2020) for correction purposes. Ignat
et al. (2022) synthesized text image datasets by ma-
nipulating parameters, like font spacing and image
saturation, then compare the original text with the
OCR output text, to evaluate OCR systems’ per-
formance on various low-resource languages, and
they enhanced Machine Translation (MT) through
backtranslation (Sennrich et al., 2015).

Some studies have explored improving post-
OCR text correction by analyzing the visual forms
of characters, known as glyphs. Chen and Zhou
(2023) attempting to use the CharBERT model (Ma
et al., 2020) for post-OCR. Their method consists
of two parallel CNN encoders and a transformer
decoder, taking CharBERT and glyph embedding
as inputs. Amrhein and Clematide (2018)’s experi-
ment included NMT models and glyph embedding,
but it did not enhance model performance. Other re-
search has focused on the detection of homoglyphs,
with Ginsberg and Yu (2018) employing a grid
method to assess the similarity of glyphs by count-
ing the number of overlapping grids between char-
acters. The similarity of glyphs is actually based
on visual features. In the field of computer vision,
feature detection and matching algorithms, such as
SIFT (Ng and Henikoff, 2003), ORB (Rublee et al.,
2011), and AKAZE (Alcantarilla and Solutions,
2011) can extract feature points from an image and
match them with those appearing in other images.



3 Methods

We now describe three common methods for gen-
erating synthetic data in the post-OCR domain, be-
fore introducing a new method based on glyph sim-
ilarity in Section 3.4. Each method makes use of a
clean corpus A. As a common preprocessing step,
we segment A into multiple chunks by initially di-
viding sentences based on punctuation marks and
then concatenating these sentences, ensuring that
the total length of each chunk does not exceed a
fixed limit of 230 characters, with the exception of
Russian and Telugu, where the limits are 140 and
90 characters, respectively.

3.1 Method 1⃝ Random Injection

The random injection method (D’hondt et al., 2017)
generates a synthetic OCR corpus Â by randomly
inserting errors into an existing clean corpus A.

First, we filter out infrequently occurring char-
acters in A, as the corpus may inevitably contain
some noise. The remaining characters are used
for replacements and insertions. Next, for each
chunk from A, we randomly select a target error
rate p ∈ [0, 15], which controls the level of noise
to be introduced. According to the analysis by Ja-
towt et al. (2019), the average rate of OCR errors
involving substitution, insertion, and deletion is
approximately 5:1:1. Therefore, in our implemen-
tation, each character has a probability of 5

7 × p of
being replaced by a random character and a proba-
bility of 1

7 × p of being deleted. Additionally, any
two characters have a probability of 1

7×p of having
a random character inserted between them.

3.2 Method 2⃝ Image Creation

Following some OCR-related studies that add noise
to text images (Jaderberg et al., 2014; Krishna et al.,
2018; Boros et al., 2022), we also investigate the
simulation of real-world correction scenarios by
creating synthetic text images. Specifically, each
chunk from corpus A is used to create a separate
image which is manipulated to add OCR-like noise.
These images are then processed through a standard
OCR system to obtain Â.

The complete procedure is as follows. Initially,
for every text chunk, a random font from the set F ,
which matches the language of corpus A, is chosen.
Then, the text from each chunk is converted into
an image. These images are subjected to random
rotations of ±5 degrees, followed by the insertion
of random noise pixels. Following this, the images

Figure 1: Examples of synthetic OCR images in various
languages, generated using the process in Section 3.2.

undergo random dilation and erosion to simulate
text variability, and their resolution are randomly
reduced within a range of 0 to 50%. At the end of
this process, the chosen OCR system is applied for
text recognition, resulting in the output Â.

Figure 1 shows sample synthesized images with
noise generated using this process, for several dif-
ferent languages. Although synthetic images are
used, this method simulates the OCR process un-
der real-world conditions, the output text is derived
from the OCR system, hence we consider it to be
representative of authentic OCR text.The corpora
A and Â can be used to construct test sets, training
sets, or to extract distributions of OCR errors.

3.3 Method 3⃝ Real-World Injection

Several studies have considered the generation of
synthetic data through the analysis of error distri-
butions in existing datasets. The primary approach
involves embedding OCR errors into the data at
rates mirroring their occurrence in real-world set-
tings (D’hondt et al., 2017; Grundkiewicz et al.,
2019; Jasonarson et al., 2023). This strategy ad-
dresses the discrepancies between existing datasets
and actual application domains, offering more con-
trol over the quality of the generated text.

To obtain a realistic OCR error distribution, in
this work we use additional clean corpus C com-
ing from the same domain and apply the method
described in Section 3.2 to obtain OCR-processed
corpus Ĉ. Subsequently, the Recursive Text Align-
ment Scheme (RETAS) (Yalniz and Manmatha,
2011) is employed to perform the automatic align-
ment of the OCR text and the original clean text,
allowing us to extract the probabilities for character
substitution, deletion, and insertion. By adjusting
the probability of these errors, we can control the
CER of the synthetic data. For instance, if the CER
between text C and its corresponding OCR version



Figure 2: Visualizations of feature matching using ORB for fonts from different character sets, where matched
feature points connected by colored lines. For each pair of characters, two numbers are displayed: the upper number
represents the Jaccard Index J of overlapping feature points, and the lower number indicates the average distance D.

Ĉ is p, then doubling all of the error probabili-
ties would result in an expected CER of 2p for the
newly generated synthetic text. In practice, we set
the expected CER for each chunk in A to a random
value ∈ [0, 15] to generate the synthetic data in Â.

3.4 Method 4⃝ Glyph Similarity
Given that OCR replacement errors frequently hap-
pen between characters with visually similar glyphs
(Jatowt et al., 2019), we can also use the informa-
tion from glyph similarities to construct synthetic
data. Specifically, we apply the following proce-
dure. Firstly, we filter infrequently appearing char-
acters from the input corpus A to form a definitive
character set. Based on the analysis of the IC-
DAR2017 (Chiron et al., 2017) and ICDAR2019
(Rigaud et al., 2019) datasets, 1:1 mapping errors,
where a single character is incorrectly identified
as another character, accounted for 87.9% of all
1:n mapping errors. Here 1:n mapping error refers
to cases where a single character be incorrectly
recognized as n characters. To enhance the compu-
tational efficiency of the implementation proposed
in this paper, we focus solely on 1:1 errors. Note
that simulations of 1:n (n > 1) errors could be
achieved through random insertion.

For each language, we select a set of appropri-
ate fonts F , which includes a variety of historical
and modern fonts, and employ a set of vision fea-
ture detection algorithms Q to extract and match
image features. In our experiments we consider
ORB (Rublee et al., 2011), AKAZE (Alcantarilla
and Solutions, 2011) and SIFT (Ng and Henikoff,
2003). For each character i in the character set, we
calculate its glyph similarity with every other char-
acter j by creating their images using fonts f from
the font set F . We then calculate their similarity
under detector q as:

S(i, j, q) =
1

|F |
∑
f∈F

J(i, j, f, q)

D(i, j, f, q)

Figure 3: Visualization of a glyph similarity matrix
for English-language characters (52 letters only). The
saturation of each cell represents the value Snorm(i, j)
between each pair of characters i and j.

where D(i, j, f, q) is the average distance between
matching point pairs for character i and j, using
font f and feature detector q. The degree of over-
lap for feature matching points J(i, j, f, q) is calcu-
lated using the Jaccard Index (Jaccard, 1912). This
is defined as the ratio of the number of matching
points relative to the combined number of feature
points in i and j minus the number of matching
points. A number of matching examples are shown
in Figure 2. We see that, as glyphs become more
similar, J increases and D decreases.

Next, we perform min-max normalization for
different mapping types and characters to obtain
the normalized score ∈ [0, 1]

Snorm(i, j) =
1

|Q|
∑
q∈Q

S(i, j, q)−min(Siq)

max(Siq)−min(Siq)

where Siq is the set of similarity scores between
character i and other characters using feature detec-
tor q. Figure 3 presents an example of Snorm(i, j)
for English-language characters.



The technique of embedding OCR errors by ex-
ploiting glyph similarity shares some common as-
pects with the random injection method described
previously. Firstly, we randomly select a target er-
ror rate p ∈ [0, 15] for each chunk from A, where
each character i in A has a probability of 5

7 × p to
be replaced with another character. The choice of
replacement is based on Snorm(i, j), with higher-
weighted pairs being more likely to be chosen. Af-
ter replacement, each character has a probability
of 1

7 × p to be deleted. Any two characters have a
probability of 1

7 × p of having a random character
inserted between them.

4 Datasets

In this paper, we undertake post-OCR experi-
ments involving English, Frisian, German, Ice-
landic, Irish, Russian, Spanish, and Telugu texts.
Clean corpora A for these languages were obtained
as follows: data for Icelandic, Irish, and Frisian
were sourced from the CC-100 corpus (Conneau
et al., 2019). Telugu2 and Russian3 datasets were
obtained from Kaggle, while English, Spanish,
and German were sourced from Project Gutenberg.
Summary statistics for the corpora are given in Ta-
ble 1. The amount of data selected simulates the
real-world rarity of these languages to some extent.

Language Length Source

English 27,883,394 Gutenberg
Frisian 3,426,499 CC100
German 3,758,352 Gutenberg
Icelandic 3,147,864 CC100
Irish 5,090,436 CC100
Russian 6,613,093 Kaggle
Spanish 7,813,245 Gutenberg
Telugu 5,777,551 Kaggle

Table 1: Corpus character counts and sources.

All training, validation, and test datasets are
generated from these clean corpora. The training
data is created using the four different methods de-
scribed in Section 3, with the aim of comparing
the synthetic data generation techniques. To imple-
ment the method presented in Section 3.3, 20% of
the text from each language corpus is used as C for
extracting OCR error distributions. The remaining

2https://www.kaggle.com/datasets/
sudalairajkumar/telugu-nlp

3https://www.kaggle.com/datasets/d0rj3228/
russian-literature/data

80% of the corpus is divided in a 8:1:1 ratio to
generate training, validation, and test sets.

The test datasets are generated using a method
similar to that described in Section 3.2, employing
the Tesseract OCR system (Smith, 2007) to convert
synthetic images into OCR text. Since the methods
described in Sections 3.2 and 3.3 involve using an
OCR system to either generate OCR text directly or
to extract OCR errors, the Google Vision API OCR
system (Fujii et al., 2017) is used when creating
training and validation datasets.

5 Models

In our experiments, we compare the performance
of various models which have been previously
adopted for post-OCR tasks, including models that
operate at the subword-level, character-level, and
byte-level tokenizers. Additionally, we evaluate
current SOTA models which is based on n-gram
and majority voting. This comparison encompasses
both pre-trained models and those trained from
scratch. Training parameters are in Appendix A.

5.1 mT5

The mT5 model (Xue et al., 2020) is an extension
of the T5 model (Raffel et al., 2020), which is
pre-trained on a multilingual dataset. This model
leverages the original T5’s text-to-text framework,
where every natural language processing task is
reframed as a text generation problem, allowing for
consistent and flexible handling of a wide range of
tasks across languages. The version we use in our
experiments is mT5-base.

5.2 mBART

The mBART model (Tang et al., 2020) is a multi-
lingual extension of the BART architecture (Lewis
et al., 2019). Developed by Facebook AI, its pre-
training approach involves corrupting text with an
arbitrary noising function and then learning to re-
construct the original text. mBART is also pre-
trained on a large corpus of text in multiple lan-
guages, making it adept at both high-resource and
low-resource language translation, as well as a vari-
ety of other language processing tasks. The version
we use in our experiments is mBART-large-50.

5.3 ByT5

The ByT5 model (Xue et al., 2022) is designed to
address the limitations of traditional subword to-
kenization methods by working at the byte level.

https://www.kaggle.com/datasets/sudalairajkumar/telugu-nlp
https://www.kaggle.com/datasets/sudalairajkumar/telugu-nlp
https://www.kaggle.com/datasets/d0rj3228/russian-literature/data
https://www.kaggle.com/datasets/d0rj3228/russian-literature/data


Figure 4: The structure of the CharBERT post-OCR
model incorporates glyph embeddings as inputs. It con-
sists of two CNN encoders and one transformer decoder.

This approach allows ByT5 to handle any language
or writing system with Unicode representation,
making it naturally multilingual and adaptable for
handling a wide variety of text data. By operating
on bytes, ByT5 avoids the complexities and biases
associated with subword vocabularies, enabling
more equitable and accurate processing across lan-
guages. ByT5 was pre-trained on the same dataset
as mT5. The model demonstrates robust perfor-
mance across a wide range of tasks (Stankevičius
et al., 2022; Jentoft, 2023). The version we use in
our experiments is ByT5-base.

5.4 CharBERT + Glyph Embedding

To verify the effectiveness of glyph embedding
as proposed by Chen and Zhou (2023), we also
conducted some experiments using their model.
CharBERT (Ma et al., 2020) is a char-level model.
In the pre-training phase of CharBERT, one of the
tasks involves text denoising which is closely aligns
with the objectives of post-OCR correction tasks.
Building on the original model, Chen and Zhou
(2023) introduced glyph embedding to CharBERT
by using a ResNet50 model (He et al., 2016). This
supports the extraction of visual information from
characters and serves as one of the inputs to the
post-OCR correction model. The structure of this
model is shown in Figure 4. In our experiments we
use the same structure and fine-tuning settings cor-
responding to the optimal configurations reported
in the original work. Since the CharBERT model
was pre-trained on the English Wikipedia dataset
(Foundation, 2024), we conduct experiments only
in English with this model.

5.5 Non-pre-trained Models

The method proposed by Ramirez-Orta et al. (2022)
achieved SOTA results in 5 out of 9 languages on

the ICDAR2019 dataset. In this study, we also
compare this model with other models using the
configuration: window type as n-grams, window
size of 60, decoding method as beam, weighting as
uniform. We refer to as the ENSEMBLE model.

Additionally, we have defined a more conven-
tional Seq2Seq model, referred to as SCRATCH.
The SCRATCH model is designed with an embed-
ding size of 512, feed-forward network embeddings
of 2048, 4 attention heads, 5 encoder layers, 5 de-
coder layers, a SentencePiece tokenizer (Kudo and
Richardson, 2018), and a vocabulary size of 3000.

6 Experiments

The primary objective of our empirical analysis in
this paper is to explore the key factors affecting the
performance of models in post-OCR tasks, aiming
to identify the most appropriate settings for such
tasks. We conduct three different experiments:

• Experiment 1: We investigate how data vol-
ume impacts on model performance, aiming
to identify a generally applicable data aug-
mentation setting that balances performance
and training time.

• Experiment 2: We seek identify the best
method for constructing synthetic data and
the best-performing model. Using the findings
from Experiment 1, we apply augmentation
and generate different datasets using the four
methods from Section 3, in combination with
multiple post-OCR models.

• Experiment 3: We extend the best settings
identified in the first two experiments to a
wider set of languages for post-OCR tasks,
verifying the applicability and effectiveness of
these settings in a broader linguistic context.

6.1 Experiment 1

The process of generating OCR synthetic data is
highly stochastic, so the same clean text can yield
different synthetic text versions when OCR errors
are inserted. This variability can potentially enrich
the model’s learning process. In this experiment,
we investigate the impact of data augmentation
techniques (by replicating the clean text data mul-
tiple times to increase the volume of data) and the
quantity of original clean text data used on model
performance. We examine whether increasing the
diversity of data via this method can enhance the
model’s ability to correct OCR errors.



English Icelandic Russian Telugu

CER 4.96 10.09 4.13 34.12

Model Data 1
6

1
3

2
3 1 1

6
1
3

2
3 1 1

6
1
3

2
3 1 1

6
1
3

2
3 1

mT5

1× 4.56 4.29 3.77 3.42 9.68 9.33 9.02 8.87 3.78 3.33 2.99 2.74 31.44 29.80 28.35 27.70
2× 4.32 4.10 3.52 3.24 9.44 9.12 8.83 8.49 3.63 3.15 2.63 2.51 29.83 28.69 27.83 26.89
4× 4.24 3.71 3.13 3.00 9.35 9.00 8.60 8.31 3.54 3.05 2.40 2.33 29.31 28.45 27.12 26.31
8× 4.24 3.68 3.05 2.93 9.32 8.90 8.54 8.29 3.55 3.02 2.39 2.36 29.22 28.44 27.23 26.32

ENSEMBLE

1× 4.84 4.69 4.51 4.46 10.18 10.09 10.00 9.88 4.09 4.00 3.90 3.83 40.23 38.47 38.02 37.71
2× 4.80 4.63 4.44 4.30 10.09 10.03 9.88 9.74 4.06 3.85 3.80 3.71 38.99 38.65 38.21 36.60
4× 4.75 4.53 4.23 4.19 10.14 9.94 9.83 9.64 4.02 3.72 3.69 3.52 38.78 38.17 37.43 35.66
8× 4.79 4.48 4.24 4.22 10.11 9.97 9.80 9.69 4.00 3.74 3.63 3.60 38.65 37.75 36.54 35.59

Table 2: Results showing the effects of data volume and augmentation on mT5 and ENSEMBLE model CER on
English, Icelandic, and Russian texts.

The experiment is conducted on English, Ice-
landic, Russian and Telugu texts. These languages
were chosen as they include both rich-resource
and low-resource languages and belong to different
language families, and have different grammatical
structures and character sets. This diversity makes
them representative for assessing different models
and methods for generating synthetic data.

To explore the impact of the original data vol-
ume, we experiment with datasets of different sizes:
the full dataset size, 2

3 size, 1
3 size, and 1

6 size, as in
post-OCR correction tasks, the training data often
need to be from the same domain as the text need
to be fixed, so the settings of 1, 2

3 , 1
3 , and 1

6 were
designed to simulate the scenarios within differ-
ent domains under one language environment with
varying amounts of clean texts. And to examine the
effect of data augmentation techniques, these will
be further expanded to 1×, 2×, 4× and 8× their
original sizes. This approach will yield multiple
versions of dataset A, and since Method 3⃝ is the
most commonly used, we will employ it to generate
the training data for this experiment. The exper-
iments are conducted using both the pre-trained
mT5-base model and ENSEMBLE model.

The results in Table 2 show that mT5 outper-
forms the ENSEMBLE model across the four lan-
guages. Data augmentation enhances model per-
formance with diminishing returns – augmenting
from 1× to 4× effectively lowers CER, but gains
from 4× to 8× are marginal. In our experiment,
training parameters for mT5 included a learning
rate of 5e-4, warm-up steps of 250, batch size of 4,
dropout rate of 0.2, and 6 epochs on fp32. Training
times for 4× augmented datasets on an RTX 4090
were approximately 35, 5, 10 and 8 hours for En-
glish, Icelandic, Russian and Telugu, respectively.
Overall, the results suggest that 4× augmentation
provides sufficient improvement.

6.2 Experiment 2

Next, we explore how different methods of creating
synthetic data impact on the performance of differ-
ent language models. We conduct tests using sev-
eral popular models: mT5-base (Xue et al., 2020),
ByT5-base (Xue et al., 2022), mBART-large (Chip-
man et al., 2022), SCRATCH, and ENSEMBLE.
We also evaluate the approach of Chen and Zhou
(2023), which combines CharBERT (Ma et al.,
2020) with glyph embedding, and compare these
results to CharBERT without glyph embedding.

The results of Experiment 2 are shown in Table
3. It is observed that methods 3⃝ and 4⃝ generally
outperform 1⃝ and 2⃝. Of the latter two, method
1⃝, which does not rely on additional data, yields
slightly higher accuracy. While method 2⃝ allows
the model to learn from real OCR outputs, it fails to
correct sentences with varying degrees of CER. In
our experiments, the Google Vision API OCR sys-
tem was used to generate training data, and Tesser-
act was used for test data. Since the Vision API
OCR system generally has a higher accuracy than
Tesseract, models only learn to correct sentences
with low CER, which is reflected in the limitations
of the method 2⃝.

Method 3⃝ proves more effective, extracting real
OCR error distributions and generating training
data with various CER values, but requires addi-
tional data. With a sufficient volume of data (as in
the English language experiments), models trained
with this method performed best. Different OCR
systems, due to their unique designs, can make var-
ious kinds of errors. With insufficient additional
data, Method 3⃝ can fail to extract a comprehen-
sive set of OCR errors, leading to distributional
shift in the data, which ultimately affects the per-
formance of models that rely on it. In Experiment
2, Method 4⃝ achieved impressive results without



English Icelandic Russian Telugu

CER 4.96 10.09 4.13 34.12

Method 1⃝ 2⃝ 3⃝ 4⃝ 1⃝ 2⃝ 3⃝ 4⃝ 1⃝ 2⃝ 3⃝ 4⃝ 1⃝ 2⃝ 3⃝ 4⃝

mT5 3.98 3.42 3.00 3.03 9.48 9.53 8.31 8.38 3.36 2.98 2.33 2.27 30.35 28.24 26.31 25.85
ByT5 4.02 3.36 2.96 3.00 9.42 9.45 8.39 8.28 3.34 3.13 2.34 2.14 30.21 28.14 25.98 25.28
mBART 4.19 4.23 3.63 3.54 9.93 10.26 9.41 9.30 3.41 3.33 2.82 2.78 31.06 28.49 25.66 26.00
CharBERT 4.12 3.60 3.39 3.57 - - - - - - - - - - - -

+Glyph 4.11 3.61 3.42 3.54 - - - - - - - - - - - -
ENSEMBLE 4.56 4.44 4.19 4.00 10.32 10.65 9.64 9.54 3.77 3.83 3.52 3.34 37.12 34.23 35.66 37.50
SCRATCH 4.79 4.74 4.52 4.62 11.92 9.82 10.43 10.00 3.91 4.06 3.62 3.64 33.56 35.28 34.52 34.92

Table 3: Comparison of CER results across various models and synthetic data generation methods in English,
Icelandic, and Russian. The best-performing model for each dataset is highlighted in bold, and the best method for
generating synthetic data for each model is underlined.

English German Irish Icelandic Frisian Russian Spanish Telugu

CER WER CER WER CER WER CER WER CER WER CER WER CER WER CER WER

OCR 4.96 15.43 5.79 19.29 12.57 35.99 10.09 30.06 5.15 16.20 4.13 8.16 6.00 17.38 34.12 90.41
Post-OCR 3.00 7.74 4.27 11.07 11.01 29.97 8.28 24.57 3.55 11.03 2.14 5.88 3.76 8.92 25.28 66.64

Table 4: Performance of the ByT5 model in terms of Character Error Rate (CER) and Word Error Rate (WER)
across multiple languages, before and after post-OCR correction.

relying on additional data. By generating its own
training data with varying degrees of CER encoded
through glyphs alone, it successfully trained mod-
els that perform well across diverse languages with
different character sets.

Overall, we observe that pre-trained models sig-
nificantly outperformed smaller Seq2Seq models
trained from scratch. mT5 and ByT5 showed sim-
ilar performance, with ByT5 reducing CER val-
ues by 39.5%, 17.9%, 48.2% and 25.9% on En-
glish, Icelandic, Russian and Telugu datasets, re-
spectively. CharBERT did not benefit from glyph
embedding, consistent with the findings of Am-
rhein and Clematide (2018).

6.3 Experiment 3

In our final experiment, we replicate the original
clean text four times for augmentation. Based on
our previous experiments, we select Method 4⃝ to
generate synthetic data and train the ByT5 model
for post-OCR tasks on data from a wider set of
languages, so that we can evaluate the chosen con-
figuration in a broader linguistic context.

From the results in Table 4, we see that the
model performs well on the English, Russian, and
Spanish tasks, with CER reductions of 39.52%,
48.18%, and 37.33%, respectively. This approach
also achieves a CER reduction of 31.07% on the
low-resource language Frisian. The performance
is poorest in the cases of Irish and Icelandic, with
only 12.41% and 17.94% reductions in CER, re-

Figure 5: Comparative analysis of CER changes after
post-OCR across multiple languages. Each bar repre-
sents the distribution of CER changes categorized as
Increased (red), Decreased (green), Equal (blue), and
Zero (dotted green).

spectively. We attribute this to two main reasons.
Firstly, the data for Irish and Icelandic (sourced
from the CC100 dataset of web-crawled data) con-
tain numerous proper nouns. These are challenging
for conventional NMT models to correct due to
their inability to handle out-of-vocabulary words.
Secondly, although the ByT5 model was trained
on a multilingual dataset, the volume of data for
low-resource languages is not substantial. This dis-
parity in data availability can affect the models’
performance on post-OCR tasks. Table 4 also in-
dicates that the Telugu test dataset has very high
CER and WER, likely due to the complexity of
Telugu glyphs (Negi et al., 2001). When Telugu
text becomes blurred, it can be difficult for OCR
systems to recognize. Thus, post-OCR processing



for Telugu results in a 25.91% reduction in CER.
Figure 5 provides a more detailed sentence-

based view of CER across languages. Here we enu-
merate the following categories for CER changes
after post-OCR processing: "Increased" indicates
sentences where the CER has increased, "De-
creased" indicates the CER has decreased, "Equal"
means that CER remained unchanged, and "Zero"
means the CER is zero after post-OCR processing
(i.e., perfect matching with the ground truth). We
observe that only a small number of sentences ex-
perienced an increase in CER after post-OCR pro-
cessing. Specifically, 25.37% of sentences in Irish
showed an increase in CER post-OCR, and only
8.66% of sentences in Russian. Notably, 59.52% of
sentences in Russian had a CER of zero after post-
OCR processing. For Telugu, which had the high-
est CER, we saw a reduction in CER for 76.18%
of sentences after post-OCR processing.

7 Conclusion

Our experiments demonstrated that augmenting
data by replicating clean text and constructing syn-
thetic data based on glyph similarity significantly
improves model performance for post-OCR cor-
rection. Furthermore, we proposed a novel ap-
proach to constructing post-OCR synthetic data
based on glyph similarity, which outperforms tradi-
tional noise injection methods, especially in scenar-
ios with limited data volume, as it does not require
additional external data. In our experiments, pre-
trained models demonstrated superior performance
compared to those without pre-training, with the
byte-level ByT5 model achieving the best perfor-
mance. For rich-resource languages, this approach
can reduce the CER by approximately 45%, while
for low-resource languages the reduction varies
between 12.41% and 31.07%.

Limitations

For the preferred Method 4⃝, the time complex-
ity of calculating the character similarity values is
O(n2). As a result, the calculation of character
similarities in languages with a large array of char-
acters, such as Chinese and Japanese, can be quite
time consuming.
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A Training parameters

Due to the numerous sub-experiments in this study,
models were trained on both RTX 4090 24GB and
A100 80GB GPUs, without selecting different train-
ing parameters for different languages.

The mT5-base, ByT5-base, mBART-large, Char-
BERT, and ResNet50 models were all sourced from
Hugging Face. Parameters for mT5-base, ByT5-
base, and mBART-large were identical: dropout
rate of 0.2, learning rate of 5e-4, batch size of
4, and 6 epochs. For CharBERT-related mod-
els, the dropout rate is 0.2, learning rate is 3e-5,
batch size is 8, with 12 epochs. The ENSEMBLE
and SCRATCH models have the same parameters:
dropout rate of 0.1, learning rate of 1e-4, batch
size of 32, and 30 epochs. All models use Adam
optimizer and are trained in fp32 precision. The
best models are selected based on dev loss.


