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ABSTRACT

Motivation: When working with large-scale protein interaction data,
an important analysis task is the assignment of pairs of proteins
to groups that correspond to higher order assemblies. Previously
a common approach to this problem has been to apply standard
hierarchical clustering methods to identify such a groups. Here we
propose a new algorithm for aggregating a diverse collection of
matrix factorizations to produce a more informative clustering, which
takes the form of a ‘soft’ hierarchy of clusters.
Results: We apply the proposed Ensemble non-negative matrix
factorization (NMF) algorithm to a high-quality assembly of binary
protein interactions derived from two proteome-wide studies in yeast.
Our experimental evaluation demonstrates that the algorithm lends
itself to discovering small localized structures in this data, which
correspond to known functional groupings of complexes. In addition,
we show that the algorithm also supports the assignment of putative
functions for previously uncharacterized proteins, for instance the
protein YNR024W, which may be an uncharacterized component of
the exosome.
Contact: derek.greene@ucd.ie
Supplementary information: Supplementary data are available at
http://mlg.ucd.ie/nmf.

1 INTRODUCTION
Large biological datasets comprising thousands of protein–protein
interactions have been assembled in recent years (Uetz and Finley,
2005). Proteins associate with each other in cells in order to carry
out biological tasks, for example as enzyme and substrate, or as
components of a protein complex. Cataloguing and analyzing such
interaction data is therefore a first step toward understanding the
biological basis of the interactions and the role of any network
structure that underlies them. Subsequent steps may layer additional
data onto these networks, for instance the strength of an interaction,
or when and where it occurs within the life cycle of the cell.
Therefore it is highly important that the organization of the data
represents the state of the proteins as fully as possible.

In recent years, the size and density of these datasets has presented
a barrier to analysis, even by individuals with extensive knowledge
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of the proteins. For instance, 18 324 physically interacting protein
pairs are described from two-hybrid, large-scale affinity pulldown,
and small-scale experiments for the Saccharomyces cerevisiae
proteome alone (Salwinski et al., 2004). Fundamentally, two
challenges exist. First, the data must be organized according to some
metric, so that proteins that behave similarly are classed together.
Second, the organized datasets must be visualized in a way that
simplifies them and reveals any underlying structure. Traditionally,
cluster analysis methods such as hierarchical agglomerative
clustering have been applied to identify functional groupings in this
kind of data (Collins et al., 2007). However, a distinct drawback of
such methods lies in the fact that each data object can only reside in
a single branch of the tree at a given level, and can only belong to
a single leaf node. In many applications it may be the case that an
object will belong to multiple distinct branches in the data’s natural
cluster hierarchy. For instance, while in large biological datasets
proteins may be associated with multiple biological processes, the
output of a traditional agglomerative clustering algorithm would fail
to reflect this.

As an alternative, matrix decomposition techniques such as non-
negative matrix factorization (NMF) (Lee and Seung, 1999) have
been recently employed in the analysis of data where overlapping
structures may exist, such as in cancer class discovery and gene
expression analysis (Kim and Park, 2007). NMF produces a low-
dimensional approximation of a high-dimensional data matrix, in
the form of non-negative factors. The non-negativity of these factors
allow them to be interpreted as a flat ‘soft’ clustering of the data,
where cluster assignments are not mutually exclusive. However,
biologists are frequently accustomed to exploring datasets via a tree-
like organization, such as that produced by traditional hierarchical
clustering algorithms. So while NMF can provide us with a powerful
means of identifying cluster structures, the resulting flat clustering
can potentially be difficult to interpret for a domain user. While it
has been suggested that some hierarchical relations between NMF
factors can be deduced via manual inspection (Brunet et al., 2004),
such an approach may be impractical for larger datasets which
contain a significant number of complex hierarchical structures.

When analyzing protein interaction networks, we would ideally
like to combine both the ability of NMF techniques to accurately
identify overlapping structures, with the interpretability and
visualization benefits of hierarchical techniques. Towards this end,
we consider the concept of ensemble machine learning techniques,
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the rationale for which is that the combined judgement of a group
of experts will frequently be superior to that of an individual
(Breiman, 1996). A variety of algorithms have been proposed to
aggregate a collection of different clusterings to yield a more
accurate, informative clustering of the data (Strehl and Ghosh,
2002). However, these algorithms have largely dealt with the
problem of combining hard clusterings (i.e. sets of disjoint,
non-overlapping clusters), produced by an algorithm such as
k-means. Brunet et al. (2004) initially considered the possibility
of combining factorizations produced by NMF. However, this
involved thresholding each factor to become a hard clustering and
subsequently producing a disjoint consensus solution, thereby losing
the ability to represent overlapping groups.

In this study, we introduce a novel ensemble clustering algorithm,
based on NMF, for the analysis and identification of localized
structures in sparse data, represented in the form of a pairwise
similarity matrix. This involves the construction of a soft hierar-
chical clustering of the data, where data objects can be associated
with multiple nodes in the tree to differing degrees. We focus on the
application of this algorithm to a high-quality dataset of physically
interacting proteins, and demonstrate that this approach can be
used to group proteins according to function, and furthermore, to
identify proteins linked to two or more functions. In addition to the
proposed approach, we provide a new application for visualizing
and exploring a soft hierarchy of clusters.

2 METHODS
In this section, we describe an approach for producing ensemble
factorizations of a symmetric matrix representing the pairwise associations
in a given dataset. This approach consists of two distinct phases:
a generation phase in which a collection of NMF factorizations is produced
(i.e. the members of the ensemble), and an integration phase where these
factorizations are aggregated to produce a final clustering of the dataset.

2.1 Ensemble generation
Given a dataset consisting of n data objects, the generation phase of
the ensemble process involves the production of a collection of τ ‘base’
clusterings. These clusterings represent the individual members of the
ensemble. Since we are interested in combining the output of multiple matrix
factorizations, each member will take the form of a non-negative n×ki matrix
factor Vi, such that ki is the number of basis vectors (i.e. clusters) specified
for the i-th factorization procedure.

To generate the collection of base clusterings, we employ the symmetric
NMF algorithm proposed by Ding and He (2005). This algorithm
decomposes a non-negative pairwise similarity matrix S∈ IRn×n to produce
a factor V by minimizing the objective function:

min
V>0

∣∣∣∣∣∣S−VV
T
∣∣∣∣∣∣2

F
(1)

The optimal factor can be approximated by starting with an initial
randomly generated factor and repeatedly applying a single update rule until
convergence

Vcj←Vcj

(
1−β+β

(SV)cj

(VVT V)cj

)
(2)

where 0<β≤1 is a user-defined parameter which controls the rate of
convergence. We have observed that, not only is the algorithm efficient in
comparison to other NMF algorithms, but it also has a tendency to produce
relatively sparse factors representing localized clusters.

It has been demonstrated that supervised ensembles are most successful
when constructed from a set of accurate classifiers whose errors lie in

different parts of the data space (Opitz and Shavlik, 1996). Similarly,
unsupervised ensemble procedures typically seek to encourage diversity with
a view to improving the quality of the information available in the integration
phase. A simple but effective strategy is to rely on the inherent instability
of randomly initialized factorization algorithms. By employing a stochastic
initialization scheme, symmetric NMF will generally converge to a variety
of different local solutions when applied multiple times to the same matrix
S. The level of diversity among the ensemble members can be increased by
varying the number of clusters in each base clustering, such as by randomly
selecting a value ki from a predefined range [kmin,kmax]. An important benefit
of this strategy is that it ameliorates a model selection problem with NMF
which is highly sensitive to the choice of the number of basis vectors ki.

Further improvements in performance and accuracy can be achieved by
seeding each NMF factorization using the output of the less computationally
expensive kernel k-means algorithm (Schölkopf et al., 1998). Specifically, to
seed the i-th base clustering, we randomly assign data objects to ki clusters
and apply kernel k-means to the matrix S. The resulting disjoint clustering
can be represented as an n×ki partition matrix, where the j-th column is
a binary membership indicator for the j-th cluster. This partition matrix is
subsequently used as the initial factor for symmetric NMF. The use of random
cluster assignment and the tendency of kernel k-means to converge to a local
solution ensures that sufficient diversity in the ensemble is maintained.

2.2 Ensemble integration
We now propose a novel approach for combining the factors produced
during the generation phase to construct a soft hierarchical clustering of
the original data.

2.2.1 Graph construction From the generation phase, we have a
collection of τ factors, giving a total of l= (k1+k2+···+kτ ) individual basis
vectors across all factors. We denote these vectors as the set V={v1,...,vl}.
This set can be modeled as a complete weighted graph consisting of l vertices,
where each vertex represents a basis vector vi. The weight on each edge
indicates the similarity between the pair of vectors associated with the two
vertices. The value of the edge weight is computed as the [0,1]-normalized
Pearson correlation (Strehl et al., 2000) between the pair of vectors (vi,vj):

ncor(vi,vj)= 1

2

(
(vi− v̄i)

T
(vj− v̄j)

||(vi− v̄i)||·
∣∣∣∣(vj− v̄j)

∣∣∣∣+1

)
(3)

The entire graph can be represented by its adjacency matrix L, where
Lij=ncor(vi,vj).

2.2.2 Meta-clustering Following the lead of the MCLA approach
described by Strehl and Ghosh (2002), we produce a ‘meta-clustering’ (i.e.
a clustering of clusters) of the graph formed from the basis vectors in V.
This is achieved by applying an agglomerative clustering algorithm to L,
resulting in a disjoint hierarchy of ‘meta-clusters’ (i.e. tree nodes containing
basis vectors from V). Rather than using a traditional linkage function such as
average linkage during the agglomeration process, we compute the similarity
between pairs of meta-clusters based on the min-max graph partitioning
objective (Ding and He, 2002), as this linkage function has a tendency to
produce clusters which are relatively balanced in size. Formally, given the
matrix L, the min-max inter-cluster similarity between a pair of meta-clusters
(Ma,Mb) is defined as:

sim(Ma,Mb)= s(Ma,Mb)

s(Ma,Ma)s(Mb,Mb)
(4)

such that
s(Ma,Mb)=

∑
vi∈Ma

∑
vj∈Mb

Lij

2.2.3 Soft hierarchy construction The output of the meta-clustering
procedure is a clustering of the basis vectors in V, in the form of a traditional
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disjoint hierarchical tree. We wish to transform this into a soft hierarchical
clustering of the original dataset. That is, a binary tree structure, where
each node Ma in the hierarchy is associated with an n-dimensional vector ya

containing non-negative real values indicating the degree of membership for
all n data objects. In practice, these node membership vectors will become
increasingly sparse as we proceed further down the tree, representing more
localized sub-structures.

To transform the meta-clustering into a soft hierarchy, we process each
node Ma in the meta-clustering tree, computing the membership vector ya

as the mean of all the basis vectors contained in Ma:

ya= 1

|Ma|
∑

vi∈Ma

vi (5)

We associate the vector ya with the position held by the node Ma in the
original meta-clustering tree. By preserving the parent–child relations from
the previous tree, these vectors can be linked together to form a soft hierarchy
as defined above.

2.2.4 Final model selection A hierarchical meta-clustering of the l basis
vectors in V will yield a corresponding soft hierarchy containing l leaf nodes.
However, a certain proportion of these nodes will be redundant, where the
membership vectors of a pair of sibling nodes may be nearly identical to the
membership vector of their parent node. This situation will arise when a tree
node in the meta-clustering of V contains basis vectors that are highly similar
to one another. Ideally we would like to prune the soft hierarchy to remove
all redundant leaf and internal nodes, thereby facilitating visualization and
human interpretation. This problem is equivalent to the identification of an
appropriate cut-off point in the tree. The concept of ensemble stability has
previously been considered as a means of identifying an appropriate cut-off
point in a disjoint hierarchy (Giurcaneanu and Tabus, 2004).

Here we propose a stability-based approach to identifying an appropriate
cut-off level, which is applicable to a soft hierarchy. Specifically, we consider
a tree node to be stable if the basis vectors in the corresponding meta-cluster
are highly similar, while an unstable node has a corresponding meta-cluster
consisting of basis vectors that are dissimilar to one another. To numerically
assess stability, we measure the extent to which an internal node can be split
into diverse sub-nodes. Given a node Ma with child nodes (Mb,Mc), this can
be quantified in terms of the weighted similarity between the membership
vector ya and the pair of vectors (yb,yc) associated with the child nodes:

split(|Ma|)= |Mb|
|Ma|ncor(ya,yb)+ |Mc|

|Ma| ncor(ya,yc) (6)

From this, we define the splitting factor of an internal node Ma as the
minimum value for Equation 6 among Ma and all child nodes below Ma

in the hierarchy. A lower value indicates a lower degree of stability for the
branch beginning at Ma. Using this definition, we can prune a soft hierarchy
by processing each internal node Ma in the tree, starting at the root node. The
child nodes of Ma (together with all the nodes below them) are removed from
the tree if the splitting factor of Ma is greater than or equal to a user-defined
threshold λ. In practice we have observed that a threshold value of λ=0.9
frequently leads to the elimination of redundant nodes without removing
those containing informative structures.

The pruning procedure outlined above allows us to construct a tree with
k leaf nodes, where the value k does not need to be specified a priori.
As with cut-off techniques used to convert a disjoint hierarchy to a flat
partition, we can produce a flat soft clustering from the leaf nodes in the tree.
Specifically, we construct a n×k matrix whose columns correspond to the
vectors of the k non-redundant leaf nodes in the soft hierarchy. Unlike spectral
dimension reduction procedures such as PCA, standard NMF techniques do
not produce an ordering of the new dimensions in terms of importance. To
produce an ordering of the columns in the flat soft clustering, the related
k leaf nodes may be ranked based on their splitting factor, with the first
column corresponding to the most stable node. The complete Ensemble NMF
algorithm is summarized in Figure 1.

Fig. 1. Summary of Ensemble NMF clustering algorithm.

3 RESULTS

3.1 Experimental setup
To examine the Ensemble NMF algorithm presented in Section 2,
we focused on a real-life problem, the assignment of experimentally
determined co-purifying protein pairs to groups that correspond to
higher order protein assemblies. We used an extensive and high-
quality assembly of binary interactions for 2390 proteins (Collins
et al., 2007) derived from two proteome-wide studies in yeast
(Gavin et al., 2006; Krogan et al., 2006). Both these studies used
a genetically encoded affinity tag fused to a single protein (‘bait’)
to pull down associated proteins (‘prey’), and each bait is linked to
its respective preys by a confidence score measuring the evidence
that the proteins do indeed co-purify, referred to as purification
enrichment (PE). The resulting pairwise PE score matrix was
normalized to the range [0,1] prior to the application of Ensemble
NMF.

In total, an ensemble of 1000 factorizations was generated, which
yielded a robust clustering. Each symmetric NMF factorization
procedure was limited to a maximum of 150 iterations for practical
purposes, although the algorithm frequently converged before this
point was reached. When applying symmetric NMF, we set the
convergence parameter β to 0.5 as recommended by Ding and
He (2005), which provides a good trade-off between accuracy and
running time. As noted previously, we have proposed simplifying the
NMF model selection process by allowing the use of a broad range
for the number of basis vectors, rather than requiring a specific value
for k. For the Collins dataset we use kmin=40 and kmax=60, and
we observe that the clustering process was not particularly sensitive
to variations of ±5 in these values. This range covers the expected
number of functional groups in the data, so the user must have some
prior expectations about that.
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As a baseline for comparison, we also conducted experiments
involving the application of traditional average-linkage
agglomerative hierarchical clustering to the uncentered correlation
matrix calculated from the PE interaction scores, as previously
performed in Collins et al. (2007).

3.2 Discussion
In our experiments we wished to determine whether the Ensemble
NMF algorithm satisfied any or all the features of an ideal
procedure for assigning proteins to an appropriate complex. These
are discussed in the following five subsections:

3.2.1 Similarity of groupings to known protein complex
compositions Cluster validation techniques are often employed to
evaluate the output of cluster analysis algorithms in cases where
some form of gold standard reference set is available. Although the
catalogue of documented protein interactions for yeast is probably
incomplete, we can make use of two resources to evaluate the
biological relevance of the results produced by Ensemble NMF:

• MIPS database: A database of stably interacting proteins
supported by multiple experiments is maintained by the Munich
Information Center for Protein Sequences1 (MIPS) and is
often used to benchmark methods for defining protein complex
composition from raw data (Mewes et al., 2004).

• SGD database: Since MIPS data was used to estimate one of
the constants for interaction confidence in the calculation of the
PE score, we also used an additional independent reference set
for validation. This set was generated from complexes given in
the SGD database (Cherry et al., 1998) as described in Collins
et al. (2007).

To numerically compare the quality of the output produced by
the two algorithms under consideration, we use two validation
measures that have commonly been employed in a variety of
machine learning tasks. First, we assess the precision of the clusters,
which is defined as the fraction of proteins in each cluster that pertain
to a specific complex in the MIPS or SGD database. Second, we
assess the recall of the clusters, which refers to the fraction of the
proteins from a given complex that were included in a cluster. High
precision implies that most proteins in a given cluster belong to
the same complex, while high recall suggests that most proteins
from a single complex were assigned to the same cluster. Since
both validation measures are applicable only to hard clusters, we
produce hard overlapping clusters from the real-valued output of
the Ensemble NMF procedure by assigning proteins to a cluster if
their membership weight for that cluster exceeds a given threshold.
While many cluster membership vectors will be naturally sparse, we
found experimentally that a threshold of 0.1 proved suitable in this
context.

MIPS-based validation scores2 for the most relevant clusters
identified by Ensemble NMF are given in Table 1, with scores
for average linkage hierarchical clustering listed in Table 2.

1http://mips.gsf.de/genre/proj/yeast/
2Note that ribosomal proteins were omitted from Tables 1 and 2 as procedures
alternatively including (Gavin et al., 2006) and discarding (Krogan et al.,
2006) a step to remove ribosomes were used to generate the raw data in
Collins et al. (2007).

Table 1. Validation scores for 20 most significant clusters identified by
Ensemble NMF on Collins data, based on MIPS complexes

MIPS complex Precision Recall

20S proteasome 1.00 0.88
Anaphase promoting complex (APC) 1.00 0.80
H+-transporting ATPase vacuolar 1.00 0.64
Post-replication complex 1.00 1.00
Pre-replication complex (pre-RC) 1.00 0.60
Replication complex 1.00 0.40
Replication initiation complex 1.00 0.75
Septin filaments 1.00 1.00
TRAPP complex 1.00 0.70
RNA polymerase I 0.93 0.59
SWI/SNF activator complex 0.89 0.89
COPI 0.88 1.00
Exocyst complex 0.88 1.00
Kornbergs mediator (SRB) complex 0.86 1.00
Signal recognition particle (SRP) 0.86 1.00
Gim complexes 0.83 1.00
TFIIIC 0.83 1.00
19/22S regulator 0.78 1.00
Arp2p/Arp3p complex 0.71 1.00
Class C Vps protein complex 0.67 1.00

Table 2. Validation scores for 20 most significant clusters identified by
average-linkage clustering on Collins data, based on MIPS complexes

MIPS complex Precision Recall

Geranylgeranyltransferase II 1.00 0.67
v-SNAREs 1.00 0.33
NEF3 complex 0.50 0.14
RNA polymerase I 0.50 0.05
RNase MRP 0.50 1.00
RNase P 0.50 1.00
Replication factor C complex 0.50 1.00
mRNA splicing 0.50 0.04
Other respiration chain complexes 0.50 0.14
RSC complex 0.27 0.90
SWI/SNF transcription activator complex 0.27 1.00
SAGA complex 0.14 0.91
rRNA splicing 0.13 0.15
Dam1 protein complex 0.10 1.00
20S proteasome 0.09 0.94
RNA polymerase III 0.08 0.92
ADA complex 0.07 0.83
RNA polymerase II 0.07 0.85
TRAPP complex 0.06 1.00
Exocyst complex 0.06 1.00

Corresponding validation scores based on the SGD reference set
are provided in Table 3 and Table 4, respectively. These tables
display the 20 most significant clusters in the clustering trees,
as ranked by their precision scores. Several notable differences
are apparent when the consolidated protein interaction data was
clustered using the Ensemble NMF algorithm, when compared to
average-linkage clustering on the uncentered correlation matrix.
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Table 3. Validation scores for 20 most significant clusters identified by
Ensemble NMF on Collins data, based on SGD complexes

SGD complex Precision Recall

Histone deacetylase complex 1.00 0.24
Vesicle coat 1.00 0.28
COPI vesicle coat 1.00 1.00
Ribonucleoprotein complex 1.00 0.06
Small nuclear ribonucleoprotein complex 1.00 0.42
Histone acetyltransferase complex 1.00 0.46
Preribosome 1.00 0.18
90S preribosome 1.00 0.21
SAGA complex 1.00 0.90
Transcription factor TFIIIC complex 1.00 1.00
Exocyst 1.00 1.00
Ubiquitin ligase complex 1.00 0.25
U4 1.00 0.82
COMPASS complex 1.00 1.00
Septin complex 1.00 1.00
DNA replication preinitiation complex 1.00 0.50
V-ATPase V1 domain 1.00 0.88
Small subunit processome 1.00 0.27
Rpd3L complex 1.00 0.91
Pre-replicative complex 1.00 0.67

Table 4. Validation scores for 20 most significant clusters identified by
average-linkage clustering on Collins data, based on SGD complexes

SGD complex Precision Recall

Ribonucleoprotein complex 1.00 0.01
NatB complex 1.00 1.00
NatC complex 1.00 1.00
Commitment complex 1.00 0.18
Transcription factor complex 1.00 0.02
Holo TFIIH complex 1.00 0.20
Spliceosome 1.00 0.03
Ctf18 RFC-like complex 0.70 1.00
Ribonuclease MRP complex 0.63 1.00
Elg1 RFC-like complex 0.50 1.00
Core TFIIH complex 0.50 0.20
SSL2-core TFIIH portion of NEF3 0.50 0.17
SSL2-core TFIIH portion of holo TFIIH 0.50 0.17
Nucleolar ribonuclease P complex 0.50 1.00
DNA replication factor C complex 0.50 1.00
Histone acetyltransferase complex 0.24 0.46
SAGA complex 0.24 0.90
SLIK (SAGA-like) complex 0.20 0.82
Transcription factor TFIID complex 0.20 0.93
DASH complex 0.11 0.89

First, Ensemble NMF, when combined with the sparse PE score
matrix, lends itself to discovering small localized structures in the
data (see subsequently). Notably the structures uncovered seem to be
far more informative and interesting than those identified using the
baseline approach. This is reflected in the substantially improved
validation scores for both validation approaches, which illustrate
that a higher number of significant structures are uncovered by

Ensemble NMF. For instance, the algorithm successfully recovers
all of the top 20 SGD complexes with perfect precision (1.0), while
seven such complexes were perfectly identified by average-linkage
clustering. Similarly, Ensemble NMF manages to recover nine MIPS
complexes with perfect precision, compared to only two by the
traditional clustering approach. Additional comparisons between
the algorithms, based on cluster significance, can be found in the
Supplementary Materials.

3.2.2 Arrangement of the data should be presented in an
intuitive visual format Visualization of high density biological
data becomes more challenging as datasets increase in size and
complexity (Uetz et al., 2002). As well as producing significant
and accurate results, it is vital that the output of a cluster analysis
procedure applied to biological data should be readily interpretable.
Toward this end, we have developed the ‘NMF Tree Browser’,
a cross-platform Java application for visually inspecting a soft
hierarchy as produced by the Ensemble NMF algorithm. The
output is graphically arranged in a hierarchical format where
the user can click on any node to reveal its contents, in terms
of membership weights for proteins together with any suggested
complex annotations (e.g. from the MIPS or SGD reference set).
A screenshot of the main window of the application is shown in
Figure 2. Additionally, the user has two other options for viewing,
one (‘Complex Browser’) focusing specifically on tree node
labeling, revealing the protein components and their appropriate
validation scores; the other (‘Protein Browser’) focuses on the
individual proteins and revealing their association with different
complexes. The application is freely available online3, together with
an implementation of the Ensemble NMF algorithm itself.

3.2.3 Provision of meaningful hierarchical structure An
additional feature of real life protein complexes is that the number
of constituent proteins is highly variable. For example, the
ribosome contains approximately 150 different proteins, while
enolase, which catalyzes the conversion of 2-phosphoglycerate
to phosphoenolpyruvate, is a dimer. It can be difficult for an
algorithm using a single set of parameters to accurately identify
such complexes, particularly as it is now evident that the larger
complexes are composed, sometimes transiently, from smaller
subcomplexes (Gavin et al., 2006; Krogan et al., 2006). In addition,
this kind of composition might not be revealed by algorithms that
produce flat clusterings, such as standard NMF (Lee and Seung,
1999) or symmetric NMF (Ding and He, 2005). In contrast, the
hierarchical nature of the output produced by the Ensemble NMF
algorithm lends itself to this analysis, where for instance the COMA
subcomplex (Ame1, Okp1, Mcm21, Ctf19) of the larger CTF19
central kinetochore complex can be resolved.

3.2.4 Identification of shared subunits An analysis tool for
protein interaction data should be able to accommodate proteins
that are present in two or more groupings, a situation that may arise
when a single protein carries out similar functions in different protein
complexes (i.e. shared subunits). Complete lists of shared subunits
defined in the MIPS and SGD reference sets, which were classified
as such using Ensemble NMF, can be found in Tables 7 and 8,
respectively in the Supplementary Materials.

3http://mlg.ucd.ie/nmf
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Fig. 2. Screenshot of the NMF Tree Browser application displaying the output of Ensemble NMF, when applied to the Collins protein interaction dataset.

A well-known example in this context is the sharing of subunits
between the distinct protein complexes RNA polymerase I, II
and III that specialize in the transcription of different RNA
species (Shpakovski et al., 1995). This is accurately reflected in
the soft hierarchy produced by Ensemble NMF, highlighting the
flexibility and resolution of the approach for the analysis of protein
interactions. Four subunits common to all three polymerases (RPB5,
RPB8, RPB10, RPO26) are appropriately classified, as are RPC19
and RPC40, subunits shared between RNApolymerases I and III, but
not found in RNA polymerase II (Lalo et al., 1993). Similarly, shared
components of the ADA, SAGA and SLIK histone acetyltransferase
complexes (ADA2, SPT3, SPT7, SPT20) are also appropriately
classified (Sterner and Berger, 2000), as are ARP7 and ARP9, two
proteins that form a stable heterodimer within the SWI/SNF and
RSC chromatin remodeling complexes (Szerlong et al., 2003).

3.2.5 Assignment of putative protein function Grouping proteins
based on common properties has been used to assign putative
functions to those proteins, using the principle of ‘guilt by
association’ (Hazbun and Fields, 2001). That is, proteins tend
to associate with other proteins involved in similar processes.
In fact, the fraction of uncharacterized proteins, even for the
intensively studied S.cerevisiae species, is still substantial (Pena-
Castillo and Hughes, 2007). The NMF Browser application supports
the discovery of such associations through the use of the ‘Protein
Browser’ window, which lists all unannotated proteins associated
with a given node in the hierarchy, and suggests putative functional
groupings for those proteins.

Interestingly, using the application we find that the
uncharacterized protein YNR024W is grouped within a tree

node that contains all 12 members of the exosome complex. In the
original data, YNR024W was experimentally co-purified with Rrp4,
Rrp6, Rrp42, Rrp45, Rrp46, Cls4 and Lrp1 (Krogan et al., 2006).
The exosome mediates 3′ processing and degradation of eukaryotic
RNA (Mitchell et al., 1997). This suggests that YNR024W may
be a previously undescribed component of this complex, and/or
participate in these processes. Indeed, we have detected a genetic
interaction between Lrp1 and YNR024W, providing independent
evidence that this is the case (N.Krogan, data not shown).

4 CONCLUSION
In this article, we have presented a new clustering approach that
involves aggregating a collection of matrix factorizations generated
using NMF-like techniques. In evaluations performed on the high-
quality protein interaction dataset produced by Collins et al. (2007),
we have observed that the proposed algorithm can improve our
ability to identify groupings that accurately reflect known protein
complex compositions. Unlike traditional agglomerative algorithms
that have previously been used in this context, the soft hierarchical
clustering produced by Ensemble NMF facilitates the discovery of
overlapping groups and multifunction proteins, while still providing
the user with an intuitive, tree-like organization of the data. To
visualize the output of the algorithm and to assist in the labeling
of previously uncharacterized proteins, we have developed the
‘NMF Tree Browser’ application. We suggest that this application,
combined with the Ensemble NMF algorithm, may also prove useful
in other data exploration tasks, such as the extraction of meaningful
structures from genetic interaction data.
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