
A State-of-the-Art Toolkit for

Document Clustering

Derek Greene

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy

March 2007



ii



Abstract

Cluster analysis refers to a family of procedures which are fundamentally concerned with

automatically arranging data into meaningful groups. These procedures are increasingly

being employed in knowledge discovery tasks to assist in the exploration and interpretation

of large datasets. Since users may often be unfamiliar with the exact contents of a dataset,

clustering can provide a means of introducing some form of organisation to the data, which

can also serve to highlight significant patterns and trends.

Cluster analysis methods have recently become an important part of commercial and

industrial applications for mining data in a variety of domains. In the past, these methods

have also been employed to facilitate the discovery of knowledge from large collections of

unstructured text. Renewed interest in document clustering has been prompted by the

exponential growth in the size of digital document collections, including web pages, e-mail

messages and news articles. Another motivating factor has been the increased availability

of computing resources, which has encouraged researchers to reconsider the application of

machine learning methods to larger corpora.

A variety of techniques for generating and evaluating clusterings of text data have

been proposed in the literature, which differ significantly in terms of their theoretical

foundations and practical implementation. A significant obstacle for researchers interested

in harnessing this work is the absence of a comprehensive framework for comparing and

extending these techniques. In this thesis, we introduce the Text Clustering Toolkit (TCT),

a state-of-the-art framework supporting the development of applications for unsupervised

text mining tasks. The toolkit covers all phases of the cluster analysis process, from the

preprocessing of raw documents to the interpretation of a final clustering solution. As

well as allowing researchers to evaluate popular learning algorithms, TCT also provides a

flexible test-bed for the design and the development of novel clustering procedures.

The primary focus of a significant body of research in document clustering has been

iii



concerned with the production of solutions that are “accurate” in the sense that they suc-

ceed in revealing the underlying structure of a dataset. This thesis proposes a selection of

novel clustering algorithms, which frequently succeed in accurately identifying the natural

trends and groups in document collections. We also describe new strategies to improve

the accuracy afforded by existing algorithms, such as those based on kernel learning. A

secondary objective, which is frequently overlooked in this area, is the provision of in-

formation to help a user interpret the output of an analysis procedure. To support the

extraction of knowledge from clustering solutions, techniques are described for producing

summary information, in the form of human-interpretable cluster labels.

The increase in computing power available to researchers has opened up many new

possibilities, such as the study of methods that involve aggregating information obtained

from multiple clusterings. This information can often provide additional insight regarding

the group structures in a dataset. However, due to the exceptionally large size and high-

dimensional nature of real-world document collections, the computational cost of applying

aggregation methods to text data will generally be prohibitive. To address this scalability

problem, we introduce novel techniques for efficiently generating and combining a diverse

collection of clusterings to produce more accurate document clustering solutions.

A particularly problematic aspect of many common unsupervised learning procedures

relates to the selection of key algorithm parameters, which can greatly dictate the success

of the procedure. To this end, we explore ways in which the aggregation of information

derived from a large collection of clusterings can provide us with clues about the validity

of a clustering model. We devote particular attention to the estimation of the number

of natural groups or topics in a text corpus, which represents a fundamental issue when

employing well-known document clustering algorithms.

iv



Contents

Abstract iii

List of Figures x

List of Tables xiii

Associated Publications xv

Chapter 1 Introduction 1

1.1 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Common Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Clustering Document Collections . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Cluster Analysis Workflow . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Goals and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Toolkit for Document Clustering . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Improving Accuracy and Interpretability . . . . . . . . . . . . . . . . 7

1.3.3 Aggregating Information from Multiple Clusterings . . . . . . . . . . 7

1.3.4 New Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Algorithms for Document Clustering 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Text Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Document Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Term Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



2.2.4 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Partitional Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Standard k-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Related Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Initialisation of Partitional Algorithms . . . . . . . . . . . . . . . . . 21

2.4 Hierarchical Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Agglomerative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Divisive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Unsupervised Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Spectral Bi-partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.3 K-Way Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.4 Bipartite Spectral Co-clustering . . . . . . . . . . . . . . . . . . . . . 42

2.6.5 Limitations of Spectral Clustering . . . . . . . . . . . . . . . . . . . 44

2.7 Non-negative Matrix Factorisation . . . . . . . . . . . . . . . . . . . . . . . 45

2.7.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Kernel Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.2 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Ensemble Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9.1 Generation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9.2 Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3 Cluster Validation Methods for Text Data 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



3.2 Internal Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Classical Internal Validation Techniques . . . . . . . . . . . . . . . . 63

3.2.2 Recent Internal Validation Techniques . . . . . . . . . . . . . . . . . 67

3.3 External Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Set Matching Measures . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Pairwise Co-assignment Measures . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Information Theoretic Measures . . . . . . . . . . . . . . . . . . . . 76

3.4 Stability-Based Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Stability Analysis Based on Resampling . . . . . . . . . . . . . . . . 78

3.4.2 Prediction-Based Validation . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 4 Text Clustering Toolkit 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Toolkit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Implementation and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 User Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 5 Baseline Analysis 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Real-World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Artificial Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Comparison of Benchmark Clustering Algorithms . . . . . . . . . . . . . . . 100

5.3.1 Partitional Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Hierarchical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Comparison of Benchmark Validation Methods . . . . . . . . . . . . . . . . 107

5.4.1 Cluster Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 6 Improving Accuracy and Interpretability 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Producing Accurate Interpretable Clusters . . . . . . . . . . . . . . . . . . . 114

6.2.1 Soft Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Refined Soft Spectral Clustering . . . . . . . . . . . . . . . . . . . . 118

6.2.3 Kernel-Based Soft Spectral Clustering . . . . . . . . . . . . . . . . . 120

6.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.5 Generating Cluster Labels . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Practical Solutions for Diagonal Dominance Reduction . . . . . . . . . . . . 128

6.3.1 Dominant Diagonals in Supervised Learning . . . . . . . . . . . . . . 128

6.3.2 Dominant Diagonals in Kernel Clustering . . . . . . . . . . . . . . . 129

6.3.3 Reducing Diagonal Dominance . . . . . . . . . . . . . . . . . . . . . 131

6.3.4 Comparison of Reassignment Behaviour . . . . . . . . . . . . . . . . 135

6.3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 7 Aggregating Information from Multiple Clusterings 142

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Efficient Prediction-Based Cluster Validation . . . . . . . . . . . . . . . . . 143

7.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.2 Kernel Prediction-Based Validation . . . . . . . . . . . . . . . . . . . 145

7.2.3 Kernel Prototype Reduction . . . . . . . . . . . . . . . . . . . . . . . 147

7.2.4 Application to Document Clustering . . . . . . . . . . . . . . . . . . 151

7.2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Efficient Ensemble Methods for Document Clustering . . . . . . . . . . . . . 157

7.3.1 Kernel-Based Ensemble Clustering . . . . . . . . . . . . . . . . . . . 158

viii



7.3.2 Efficient Ensemble Clustering . . . . . . . . . . . . . . . . . . . . . . 162

7.3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Chapter 8 Conclusions 169

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.1.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 Thesis Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3.1 Toolkit Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3.2 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3.3 Applications in Other Domains . . . . . . . . . . . . . . . . . . . . . 173

Bibliography 174

ix



List of Figures

1.1 Three alternative clusterings for the same set of data objects . . . . . . . . 2

1.2 Generic document clustering workflow for a knowledge discovery task . . . . 4

2.1 Standard batch k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Example of the application of k-means to the 2-spirals dataset . . . . . . . 17

2.3 Example dendrogram representing an agglomerative clustering of five data

objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Bisecting k-means (BKM) algorithm . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Principal Direction Divisive Partitioning (PDDP) algorithm . . . . . . . . . 27

2.6 Histograms for intra-class and inter-class similarity values generated on the

bbc corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Mean running time for k-means clustering on the bbc corpus . . . . . . . . . 30

2.8 Visualisation of the ‘business’ and ‘sport’ topics from the bbc corpus, based

on 2–3 leading principal components . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Example illustrating spectral bi-partitioning of a small text dataset . . . . . 38

2.10 Pairwise cosine similarity matrices generated for the bbc corpus . . . . . . . 40

2.11 Histograms of pairwise cosine similarity values for the k-way spectral em-

bedding of the bbc corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Workflow for the k-way spectral clustering process . . . . . . . . . . . . . . 41

2.13 Ng-Jordan-Weiss (NJW) spectral clustering algorithm. . . . . . . . . . . . . 43

2.14 Example application of the eigengap method to estimate the optimal num-

ber of clusters in the bbc corpus . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.15 Euclidean-based NMF algorithm, using multiplicative update rules. . . . . . 47

2.16 Kernel k-means (KKM) algorithm. . . . . . . . . . . . . . . . . . . . . . . . 50

2.17 Generic ensemble clustering workflow . . . . . . . . . . . . . . . . . . . . . . 53

x



3.1 Two possible clusterings of a simple synthetic dataset containing three well-

separated groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Example of a simple matching procedure used in external validation . . . . 72

3.3 Example of applying prediction-based validation to examine the suitability

of a clustering model for a synthetic dataset . . . . . . . . . . . . . . . . . . 81

4.1 Design of the layer-based architecture for TCT . . . . . . . . . . . . . . . . 84

4.2 Output for the cluster-label tool when applied to the bbcsport dataset . 91

4.3 Sample cluster analysis workflow that chains multiple toolkit components . 93

4.4 Source code for a TCT application that involves chaining multiple components 93

5.1 External validation index scores based on the pairwise agreement between

random partitions of 1000 data objects . . . . . . . . . . . . . . . . . . . . . 98

5.2 Rank correlations between internal validation indices and NMI accuracy,

measured across all artificial text datasets . . . . . . . . . . . . . . . . . . . 108

5.3 Percentage of correct and top-3 estimations for k̂ as selected by internal

validation indices, measured across all artificial text datasets . . . . . . . . 109

6.1 Soft Spectral Co-clustering (SSC) algorithm . . . . . . . . . . . . . . . . . . 118

6.2 Refined Soft Spectral Co-clustering (RSSC) algorithm . . . . . . . . . . . . 120

6.3 Kernel-based Soft Spectral Co-clustering (KSSC) algorithm . . . . . . . . . 121

6.4 Kernel matrix constructed on a subset of documents from the classic3

dataset, which exhibits diagonal dominance . . . . . . . . . . . . . . . . . . 130

6.5 Leading eigenvalues for a normalised linear kernel matrix constructed on a

subset of documents from the classic3 corpus . . . . . . . . . . . . . . . . . 132

6.6 Kernel k-means with algorithm adjustment . . . . . . . . . . . . . . . . . . 135

6.7 Percentage of accepted reassignments made during first 10 iterations of the

kernel k-means algorithm, when applied to a subset of documents from the

classic3 corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.8 Plot of mean NMI accuracy scores for clusterings generated by kernel k-

means and adjusted kernel k-means . . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Plot of first two Principal Components of a subset of documents from the

20NG collection, showing partitions generated when applying prediction-

based validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



7.2 Plot of expected values for the prediction strength index when applied to

randomly generated pairs of partitions . . . . . . . . . . . . . . . . . . . . . 146

7.3 Kernel prediction-based validation scheme . . . . . . . . . . . . . . . . . . . 147

7.4 Kernel matrices constructed on a subset of documents from the 20NG col-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 Kernel prediction-based validation scheme, with prototype reduction . . . . 151

7.6 Percentage of correct and top-3 estimations for k̂ as selected by stability-

based validation schemes, measured across all artificial text datasets . . . . 153

7.7 Examination of the effect of ensemble size on the accuracy and stability of

ensemble clustering, when applied to the cstr corpus . . . . . . . . . . . . . 158

7.8 Kernel-based correspondence clustering algorithm . . . . . . . . . . . . . . . 160

7.9 Example illustrating three iterations of a correspondence-based ensemble

clustering procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.10 Plot of the average running time for kernel k-means when applied to samples

from the classic3 corpus, using a full and reduced kernel matrix . . . . . . . 162

7.11 Workflow for ensemble clustering with prototype reduction . . . . . . . . . 163

7.12 Kernel-based correspondence clustering with prototype reduction . . . . . . 164

xii



List of Tables

2.1 Small dataset consisting of six short text fragments . . . . . . . . . . . . . . 38

2.2 Top ranked terms in the basis vectors produced by applying NMF factori-

sation to the ‘business’ and ‘sport’ classes from the bbc corpus. . . . . . . . 46

4.1 A list of standard preprocessing methods supported by TCT . . . . . . . . 87

4.2 A list of standard clustering methods supported by TCT . . . . . . . . . . . 88

4.3 A list of standard validation methods supported by TCT . . . . . . . . . . 89

5.1 Details of real-world text datasets used in cluster analysis experiments . . . 95

5.2 NMI accuracy results for partitional clustering methods, when applied to

real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 NMI accuracy results for agglomerative hierarchical clustering methods,

when applied to real-world text datasets . . . . . . . . . . . . . . . . . . . . 101

5.4 NMI accuracy results for agglomerative hierarchical clustering methods with

refinement, when applied to real-world text datasets . . . . . . . . . . . . . 103

5.5 NMI accuracy results for divisive hierarchical clustering methods, when

applied to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 NMI accuracy results for divisive hierarchical clustering methods with re-

finement, when applied to real-world text datasets . . . . . . . . . . . . . . 105

5.7 Top-3 estimations for k̂ as selected by internal validation indices when ap-

plied to clusterings of real-world text datasets . . . . . . . . . . . . . . . . . 111

6.1 NMI accuracy results for clustering methods based on matrix decomposi-

tion, when applied to real-world text datasets . . . . . . . . . . . . . . . . . 123

6.2 Labels for a clustering of the bbc corpus . . . . . . . . . . . . . . . . . . . . 126

6.3 Labels for a clustering of the bbcsport corpus . . . . . . . . . . . . . . . . . 127

xiii



6.4 Details of kernel matrices constructed on real-world datasets . . . . . . . . . 136

6.5 NMI accuracy results for kernel clustering with dominance reduction, when

applied to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 ANMI stability results for kernel clustering with dominance reduction, when

applied to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 NMI accuracy results for kernel clustering of real world text-datasets, when

using a subpolynomial kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Average running times for stability-based validation schemes, when applied

to artificial text datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Top-3 estimations for k̂ as selected by stability-based validation schemes,

when applied to clusterings of real-world text datasets . . . . . . . . . . . . 155

7.3 Average running times for stability-based validation schemes, when applied

to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4 NMI accuracy results for base and ensemble clustering methods, when ap-

plied to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 Comparison of running times for ensemble clustering methods, when applied

to real-world text datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xiv



Associated Publications

Greene, D. & Cunningham, P. (2006). Practical solutions to the problem of diagonal dom-

inance in kernel document clustering. In Proceedings of the 23rd International Conference

on Machine learning (ICML’06), 377–384, ACM Press.

Greene, D. & Cunningham, P. (2006). Efficient prediction-based validation for docu-

ment clustering. In Proceedings of the 17th European Conference on Machine Learning

(ECML’06), 663–670, Springer Berlin.

Greene, D. & Cunningham, P. (2005). Producing accurate interpretable clusters from

high-dimensional data. In Proceedings of the 9th European Conference on Principles and

Practice of Knowledge Discovery in Databases (PKDD’05), 486–494, Springer.

Greene, D., Tsymbal, A., Bolshakova, N. & Cunningham, P. (2004). Ensemble clustering

in medical diagnostics. In Proceedings of the 17th IEEE Symposium on Computer-Based

Medical Systems (CBMS’04), 576–581, IEEE Computer Society.

xv



Chapter 1

Introduction

1.1 Cluster Analysis

Cluster analysis refers to a family of procedures which are fundamentally concerned with

automatically arranging data into meaningful groups. The grouping process, generally

referred to as clustering, attempts to divide a set of data objects so that those assigned

to the same group share common characteristics, while those assigned to different groups

are conceptually unrelated. In certain situations, this form of data analysis may be used

to verify whether or not a dataset contains patterns that are assumed to exist according

to a particular hypothesis. For other purposes, the identification of clusters represents

the initial phase in a larger application, where it may be used as a means of summaris-

ing or compressing data. However, cluster analysis is increasingly being employed as an

important tool in knowledge discovery tasks. In this context, it forms an integral part of

exploratory data analysis, where users may be unfamiliar with the exact contents of the

data and may wish to introduce some form of organisation, or identify important trends.

In the machine learning community, cluster analysis procedures are often referred to as

unsupervised learning methods to emphasise the absence of any form of external feedback.

This is in contrast to supervised learning methods, which use training examples from a

fixed number of predefined classes to learn a model. Clustering algorithms must attempt

to identify patterns by relying solely on the intrinsic characteristics of a limited sample of

data, without referring to any a priori class information. Consequently, the same set of

data objects may be grouped in many different ways, depending upon various aspects of the

clustering model employed, such as the desired number of clusters. A simple illustration

1



Figure 1.1: Example of three alternative clusterings for the same set of data objects.

of this is shown in Figure 1.1.

1.1.1 Common Applications

The use of cluster analysis methods can be found in the literature of many academic disci-

plines, ranging from geography to sociology, where they have proved useful in identifying

patterns and trends in data. Recently, these methods have also become an important part

of industrial and commercial applications for mining data in a variety of areas. Well-known

examples include:

Bioinformatics: Microarray technology makes it possible to simultaneously examine the

behaviour of thousands of genes under different experimental conditions. Cluster

analysis techniques may subsequently be applied to the resulting expression data to

identify functional groups of genes (Kluger et al., 2003).

Image analysis : When working on images in tasks such as content-based image retrieval

and object recognition, it is often desirable to identify smaller regions of interest for

further processing (Lau & Levine, 2002). This is particularly useful when dealing

with large, complex images such as those analysed in biomedical applications.

Multimedia signal processing: It may also be useful to identify groups of related

scenes from whole video sequences, to aid browsing and navigation. Similar tech-

niques may be employed to automate the detection of unusual activity or specific

events in long sequences of video footage (Zhong et al., 2004).

Marketing research: Customer records may be organised based on demographic at-

tributes or purchasing patterns. These groups may be subsequently used to identify

customers who may be interested in new products or services (Punj & Stewart, 1983).

2



1.2 Clustering Document Collections

In addition to the examples enumerated previously, cluster analysis has also formed an

integral part of text mining applications, where it has been used to facilitate the discovery

of knowledge from large collections of natural language text. In this context, the task of

clustering represents an attempt to impose some form of structure on a collection by iden-

tifying interesting groups of documents sharing a common topic or theme. This problem

has been studied for some time (e.g. Jardine & van Rijsbergen, 1971), but has seen little

progress until relatively recently. However, renewed interest in document clustering has

been prompted by the exponential growth in the size of unstructured digital document

collections, both in the form of publicly available resources such as the World Wide Web

and private, domain-specific textual databases. Another motivating factor has been the

improvement in computing resources, which has encouraged researchers and users alike

to reconsider the application of unsupervised learning methods in this area. Unlike text

classification tasks, which require a set of labelled training examples to be assembled

beforehand to provide supervision, cluster analysis procedures allow users to explore doc-

ument collections without necessitating an initial training phase or requiring any form of

prior knowledge regarding possible groupings.

Document clustering tasks can generally be divided into two categories: offline tech-

niques that seek to cluster a static, previously compiled collection of documents, and

online techniques that operate on an incrementally compiled set of documents. In both

cases, the application of a clustering procedure is intended to allow the user to browse and

explore a collection more effectively. We follow the popular trend of research in this area

and focus on offline document clustering problems.

1.2.1 Cluster Analysis Workflow

Formal research concerning the problem of cluster analysis dates back over four decades

(e.g. Forgy, 1965). However, the majority of work in the literature of this area has

been contributed over recent years, during which time a vast range of algorithms have

been proposed that vary greatly in their theoretical foundations and practical details.

Most commonly, these algorithms involve producing a hard clustering of a dataset, which

represents a disjoint partition where each object belongs to one and only one cluster. In

some cases, the clusters are arranged in a nested fashion to produce a tree-like model of

3



Clustering 
Algorithm

Corpus Model Clustering

Cluster 
Validation

Pre-
Processing

Feedback

Figure 1.2: Generic document clustering workflow for a knowledge discovery task, which
consists of three fundamental phases: preprocessing, clustering and validation.

concepts (Voorhees, 1986). Instead of assigning each object to a dedicated cluster, other

authors have proposed methods to generate a soft clustering of data, which allows clusters

to overlap so that objects may belong to several clusters to different degrees (Bezdek,

1981). Often soft cluster membership weights are constrained to take probabilistic values,

resulting in a fuzzy clustering of the data. In this case a weight of 0 indicates that an

object does not belong to a cluster at all, while a weight of 1 indicates that an object

belongs entirely to a cluster. In general, a soft clustering may be converted to a hard

clustering by assigning each object to the cluster for which it has the highest membership

weight.

For many applications, it is customary to represent a collection of data objects in terms

of a fixed number of attributes or features, so that each object can be viewed as a point in

a multi-dimensional feature space. In the case of text corpora, these data objects represent

individual documents and their features generally correspond to unique words or phrases

from the vocabulary of the corpus. As an alternative, other clustering algorithms have

been proposed that operate on a representation which describes each object in terms of its

pairwise relations with other objects. In practice, this representation will typically take

the form of a similarity or dissimilarity matrix. A benefit of this approach is that the

repeated computation of similarity values in the original space can be avoided, although

the clustering algorithm may no longer have access to the raw feature values.

While individual clustering algorithms may differ significantly, offline document clus-

tering tasks applied in the context of knowledge discovery typically proceed as shown in

Figure 1.2. The three fundamental phases in this workflow may be summarised as follows:

1. Preprocessing: Transform the collection of raw, unstructured text documents into a

suitable model for clustering. It may often be necessary to adjust this representation

4



to improve clustering performance, such as by applying normalisation techniques or

by removing unnecessary features from the model.

2. Clustering: Select a suitable clustering algorithm and a corresponding set of param-

eter values. Apply the chosen algorithm to the data model to produce a clustering

solution.

3. Validation: Quantitatively evaluate the quality of the newly generated clustering

solution. It may also be useful at this stage for a user to subjectively examine and

interpret the clusters.

In many real-world scenarios it may be necessary to repeatedly adjust parameter values

and reapply the clustering algorithm until a useful or interesting solution is obtained.

1.2.2 Goals and Challenges

The primary focus of a significant body of research in cluster analysis has been on pro-

ducing accurate clusterings of data. Unlike supervised tasks, where classification accuracy

is a well-defined concept, the lack of a definitive set of classes means that there is no cate-

gorical definition of what constitutes a correct clustering. However, it is generally agreed

that, where possible, an accurate clustering should reveal the “natural classes” present in

the data (Strehl, 2002). For a text corpus, this could correspond to groups of documents

corresponding to a set of topics or themes. In practice, it may be the case that several

meaningful groupings of the same data exists, depending upon the number of clusters

chosen. Another aspect of cluster analysis that is often overlooked is the provision of

information to facilitate the human interpretation of the output of a clustering algorithm.

When working with text data, the ability to generate cluster labels that summarise the

salient concepts present in groups of documents can help users to effectively understand

a clustering solution.

Prior to the advent of machine learning techniques for document clustering, collections

had to be manually organised by domain experts, a time-consuming task that is generally

impractical for all but the smallest corpora. Although improved computing resources has

made the automation of such tasks feasible, the development of algorithms that successfully

achieve the goals of document clustering has continued to present computer scientists with

a variety of challenges, with the most prominent of these being:

5



Scalability: Even with the availability of significant processing power, an obstacle that is

constantly present when applying machine learning techniques to textual databases

is that of dealing with the sheer volume of data available, with some repositories

containing millions of document. Current trends suggest that the growth in the size

of data repositories will continue to outstrip computational power. Thus, an accept-

able trade-off must be found between clustering accuracy and algorithm running

time.

Dimensionality: In natural language corpora, the size of the vocabulary is often ex-

tremely large. Scalability problems may be exacerbated by the high dimensionality

of text documents when they are represented as points in a feature space. Specifi-

cally, each unique word or phrase will typically require an additional dimension, and

the time required to run many classical clustering techniques can increase rapidly

as the number of dimensions increases. The sparsity of the feature space can also

impact upon an algorithm’s ability to produce accurate clusterings.

Robustness: Another problem derives from the fact that most real-world data will con-

tain noise. For text documents, this could be due to the presence of irrelevant terms

and errors introduced by misspellings, typographical mistakes or OCR recognition

faults. Noise can also take the form of outlying documents that do not fit into any

of the underlying groups in the data. In presence of such noise, many algorithms

will not be effective in producing an accurate, definitive clustering solution.

Model selection: A particularly problematic aspect of many clustering procedures is the

selection of key algorithm parameters, such as the desired number of clusters. These

decisions can greatly influence the outcome of the procedure. However, in many

cases it is unclear as to how an appropriate clustering model should be determined.

Validation: A related problem is that of determining how to produce a quantitative

evaluation of the quality of a given clustering solution. As there is no universally

accepted definition of what constitutes an accurate clustering, it may be difficult

to automatically distinguish between a solution consisting of groups that accurately

reflect the patterns in the data and one that does not provide a user with any useful

insight.

6



1.3 Contributions

In this section we summarise the specific contributions of this thesis.

1.3.1 Toolkit for Document Clustering

A major output of our work has been the development of the Text Clustering Toolkit

(TCT), a state-of-the-art framework providing data analysts with access to a range of

well-know classical and contemporary document clustering procedures. The toolkit in-

cludes implementations of techniques covering all phases of the cluster analysis process,

from the application of preliminary preprocessing procedures to the final assessment and

interpretation of a newly generated clustering solution. While the primary focus of our

work has been on text data, an important design goal for TCT has been to support the

deployment of learning applications in other domains. Therefore, the design of the toolkit

is structured around a layer-based architecture, containing modular components that can

be readily reused in different tasks.

1.3.2 Improving Accuracy and Interpretability

Accuracy and interpretability represent two fundamental objectives in document cluster-

ing. In this thesis, we introduce several novel clustering algorithms designed to produce

accurate clusterings of large document collections. Empirical evaluations on real-world

datasets demonstrate that these algorithms frequently succeed in identifying the natural

trends and groupings in the data. To facilitate the discovery of knowledge from the re-

sulting clustering solutions, we propose complementary strategies for generating readily

interpretable summary information, in the form of both descriptive and discriminative

cluster labels.

1.3.3 Aggregating Information from Multiple Clusterings

Recent work in machine learning has involved the study of methods that involve gener-

ating many different clusterings of the same dataset and aggregating these solutions in a

manner that extracts the most information about the underlying structures in the data

(Fred, 2001). However, due to the exceptionally large size and high-dimensional nature of

many document collections, scalability issues have meant that such aggregation methods

have rarely been applied to this type of data. To address these issues, we propose efficient

7



algorithms for combining information from multiple clusterings to produce a more accu-

rate, definitive solution. We also demonstrate that, by analysing the level of agreement

between a large set of clusterings, we can gauge the suitability of a given clustering model.

This work is particularly relevant to the problem of estimating the number of clusters in a

dataset, which is a fundamental question when employing document clustering algorithms.

As always, we seek to perform this analysis in a manner that is not prohibitively expensive

when working with large corpora.

1.3.4 New Benchmark Datasets

In the task of evaluating novel clustering and validation methods, the provision of an-

notated and well-understood corpora is highly useful. To this end, during the course of

our research we have constructed two new high-quality text corpora, the bbc and bbcsport

collections. These are composed of news articles relating to a variety of themes. An

advantage of producing corpora of this type stems from the fact that the data and any

generated clusterings may be interpreted by users without the need for specialist domain

knowledge. In addition, we have constructed 84 artificial datasets, assembled from ex-

isting resources, which are specifically designed to evaluate the ability of cluster analysis

methods to perform successfully on data containing natural classes of differing complexity

and structure.

1.4 Thesis Organisation

Chapter 2: Algorithms for Document Clustering presents a comprehensive review

of classical and state-of-the-art algorithms that have previously been applied for

the task of document clustering. In addition, we examine related areas such as

techniques for preprocessing raw document collections and methods for reducing the

dimensionality of the resulting data model.

Chapter 3: Cluster Validation Methods for Text Data focuses on the general task

of quantitatively assessing the quality of clustering solutions. We provide a survey

of existing methods which may be employed to compare the relative accuracy of

document clustering algorithms. We also examine strategies intended to select the

most suitable clustering model from among several possible candidates.

8



Chapter 4: Text Clustering Toolkit introduces TCT, a new Java-based toolkit for

document clustering, which provides researchers with the ability to compare and

extend popular cluster analysis procedures. We describe the architectural design and

functionality of the software, and provide practical details about its implementation

and usage.

Chapter 5: Baseline Analysis contains a description of the experimental procedures

and datasets used in empirical evaluations throughout this thesis. Furthermore, we

provide a comparison of classical document clustering and validation methods, with

a discussion of their advantages and limitations. This evaluation also provides us

with a baseline for the assessment of approaches proposed in later chapters.

Chapter 6: Improving Accuracy and Interpretability presents novel techniques to

improve the performance of modern clustering algorithms on high-dimensional data,

while also ensuring that the resulting solutions may be easily understood by a user.

Chapter 7: Aggregating Information from Multiple Clusterings explores ways in

which multiple clusterings may be generated and combined to provide users with a

greater insight into a collection of documents. Specifically, we describe both cluster-

ing and validation techniques, based on this concept, which are practical for use on

large text datasets. A full comparison and analysis of the performance and efficiency

of these techniques is included.

Chapter 8: Conclusions summarises the findings of this thesis and discusses potential

avenues for future research.

9



Chapter 2

Algorithms for Document

Clustering

2.1 Introduction

A vast array of algorithms for grouping data have been proposed, not only by members of

the machine learning community, but also by researchers in many other academic disci-

plines. These algorithms vary significantly in terms of their theoretical foundations and the

details of their practical implementation, and many are not directly applicable when work-

ing with text data. In this chapter we provide a comprehensive survey of similarity-based

algorithms, both classical and contemporary, which are relevant to the task of document

clustering. These algorithms can be divided into five broad categories:

1. Partitional algorithms involve the generation of a flat grouping of the data objects,

typically by performing an iterative refinement process that attempts to optimise a

given objective function. The generated clusterings may either by disjoint or overlap-

ping, and the algorithms often contain a stochastic element, where the optimisation

process begins from a randomly generated initial solution.

2. Hierarchical algorithms produce a tree-like structure of nested clusters, which may

be constructed using either a top-down or bottom-up strategy. These algorithms are

often deterministic in that, for a given dataset, they will consistently produce the

same single, definitive solution.

3. Matrix decomposition methods apply well-known techniques from linear algebra, such

10



as spectral analysis or sparse matrix multiplication, to produce a reduced represen-

tation of the data model, from which an accurate clustering solution can be more

easily derived.

4. Kernel methods apply functions to implicitly transform the data to a new, possibly

high-dimensional space where non-linear relationships between data objects may be

more readily identified.

5. Ensemble clustering methods involve generating a diverse collection of clusterings on

the same data and subsequently combining these clusterings to produce a superior

solution.

The first pair of categories represent well-established approaches that have been widely

used in the literature for several decades, while the latter three represent alternative,

modern approaches that have recently become popular. In this chapter, we examine all

five categories in detail, describing their respective advantages and limitations. In addition,

we discuss a variety of issues that are relevant when applying clustering methods to text

data, ranging from the generation of a suitable data model to problems pertaining to

scalability.

2.2 Text Preprocessing

Before introducing the clustering algorithms themselves, it is necessary to examine the

preliminary phase of the cluster analysis process, which is concerned with producing a

machine-interpretable representation from a document collection. As we shall see, the

nature of the preprocessing techniques that are applied in this context can greatly influence

the outcome of any subsequent clustering procedure.

2.2.1 Document Parsing

Given a new collection of unstructured text documents {d1, . . . , dn}, the first task is to

apply a once-off parsing process, where the set of raw documents is transformed into a

data model which can be subsequently analysed by a machine learning algorithm. This

task generally involves applying a chain of procedures to each document:

Tokenisation: This initial procedure transforms the content of a document into a se-

quence of terms, representing words or phrases, which will subsequently be used to

11



characterise the document. In some cases it may be useful to preserve information

regarding the relative ordering of terms, depending upon the choice of data model.

Stemming: To reduce the number of unique terms, it is generally useful to stem terms

to their roots. For the English language, the standard procedure is to apply the

Porter suffix stripping algorithm (Porter, 1980) to eliminate common morphologi-

cal and inflectional endings (e.g. “programming”→“program”). A variety of open

and commercial techniques are available for stemming documents written in other

languages.

Stop-word removal: It will often be the case that it is not necessary to include all terms

from the original corpus vocabulary in the data model. Notably, in text mining tasks

it is extremely common to remove basic functional words (e.g. “the”, “if” ) which

occur so frequently in documents that they have no discriminating power and can

be considered to be noise (Rijsbergen, 1975).

2.2.2 Vector Space Model

The choice of a suitable model to express document-term relations is fundamental to the

success of text mining tasks. The vector space model (Salton et al., 1975), also referred to

as the “bag of words” approach, has been the dominant method for representing documents

in information retrieval, text classification and clustering problems. In this model, each

document dj is represented by a vector xj = {f1, . . . , fm} in a m-dimensional term space,

where m is the total number of unique terms across all documents in the corpus and fi

indicates the frequency of occurrence of the i-th term in dj . Once an entire corpus of n

documents has been transformed to a corresponding set of feature vectors {x1, . . . , xn},

the documents can be clustered based on the similarities or dissimilarities between vectors.

For convenience, the complete model is usually stored as a single term-document matrix

A = [x1 x2 . . . xn] ∈ IRm×n

where the entry Aij indicates the frequency of the i-th term in the document vector xj .

When employing this model, a significant amount of information about the original

documents is lost, including information describing the ordering and context of terms.

Some authors have suggested adapting the bag of words approach to use features con-

structed from phrases or n-grams, which consist of sequences of n consecutive characters

12



extracted from text strings. However, the former can greatly exacerbate problems related

to sparsity, while the latter reduces the interpretability of the model. Other radically

different approaches for modelling text have been proposed (e.g. Park et al., 2004), but

none of these have been widely adopted. While the lack of spatial information and the

sparse, high-dimensional nature of the term space do represent significant drawbacks, the

vector space model remains the most popular choice due to its simplicity and the fact that

traditional clustering algorithms working on numerical feature vectors can be directly ap-

plied to this representation. The underlying assumption here is that, if a pair of vectors

are close to one another in the high-dimensional term space, the corresponding documents

will share similar concepts.

2.2.3 Term Weighting

When working with text data, it is common to employ an additional preprocessing step,

which involves replacing the original raw term frequency values with weighted frequencies

calculated according to some normalisation function. This function is typically composed

of two components: term frequency (tf) and inverse document frequency (idf). The former

has the effect of increasing the impact of terms that occur frequently in a single document,

while the latter seeks to reduce the influence of terms occurring in many documents, which

may not be helpful in discriminating between the underlying classes in the data.

A wide variety of tf-idf weighting schemes were formally described by Salton & Buck-

ley (1987). Among these, the ltc variant is most frequently employed in the document

clustering literature, which applies logarithmic normalisation to both term frequency and

document frequency values. Formally, the weighted frequency value for the i-th term in

the document dj is defined as:

tfidf(i, j) = ltf(i, j) ·
(

log
n

dfi

)
where ltf(i, j) =

 1 + log fi if fi > 0

0 otherwise.
(2.1)

where fi is the number of occurrences of the i-th term in dj and dfi is the total number

of documents in the dataset which contain that term.

2.2.4 Similarity Measures

The choice of a suitable measure for quantifying the strength of association between pairs

of documents is essential to the successful discovery of accurate groupings. For some clus-

13



tering algorithms, a single pairwise similarity or dissimilarity matrix can be constructed as

part of the preprocessing phase to avoid unnecessary computations during the subsequent

clustering process. In other cases, the measure will be employed to pairs of documents

during the execution of the algorithm itself. While a wide range of techniques for assessing

similarity have been proposed in different application fields, we consider here three metrics

that are interesting from the perspective of researchers working with text datasets.

Euclidean distance

The most popular measure for working with real-valued feature vectors is Euclidean dis-

tance, which involves computing the squared L2 norm between two vectors:

ed(xi, xj) = ||xi − xj || =

(
m∑

l=1

(xi,l − xj,l)2
) 1

2

(2.2)

This metric has been widely used in machine learning problems due to its intuitive ap-

proach to capturing the concept of distance and its applicability to many different types

of data. For similarity-based algorithms, a common approach for converting Euclidean

distances to similarity values is to use the exponential function (Ghosh, 2003):

sed(xi, xj) = e−||xi−xj ||2 (2.3)

A generalisation of Eqn. 2.2, often referred to as the Minkowski distance measure, employs

the Lp norm, where the value of the exponent p is a user-defined parameter.

Cosine similarity

Although Euclidean distance is useful in many domains, it has frequently been shown that

it does not work well for high-dimensional data, due to the importance it places on absent

values (Strehl, 2002). As an alternative, the most commonly used method to compute

the similarity between two documents when employing the vector-space model has been

to measure the cosine of the angle between their corresponding vectors (Salton & McGill,

1983):

cos(xi, xj) =
〈xi, xj〉
||xi|| · ||xj ||

(2.4)

Note that the numerator is the dot product between the two vectors, while ||xi|| in the

denominator indicates the length of xi. This normalisation ensures that pairs of documents

which differ in length, but have term frequencies in equal proportions, are considered to

14



be identical. In that case, the value of Eqn. 2.4 is one, while a value of zero indicates that

a pair of documents do not share any common terms. For algorithms that make use of

dissimilarity values, cosine distance may be computed by simply using:

dcos(xi, xj) = 1.0− cos(xi, xj) (2.5)

Extended Jaccard similarity

The Jaccard coefficient (Jaccard, 1912), which assesses the level of agreement between two

sets based on the ratio of union and intersection between the pair, has often been used as

a measure of similarity on data represented by binary features. Strehl et al. (2000) recast

this coefficient for use on non-negative, real-valued data, where the similarity between two

feature vectors is computed by:

ej(xi, xj) =
〈xi, xj〉

||xi||2 + ||xj ||2 − 〈xi, xj〉
(2.6)

As with the cosine measure, Eqn. 2.6 gives more emphasis to the presence of a term than

to its absence, making it potentially useful when working with a sparse vector space model.

However, it is sensitive to document length and has not been widely used in the context

of document clustering.

2.3 Partitional Clustering Methods

We now consider the problem of clustering itself, and begin by examining popular par-

titional clustering methods, which attempt to directly decompose a dataset into a flat

partition consisting of a fixed number of clusters, denoted C = {C1, . . . , Ck}. These meth-

ods generally seek to produce a local approximation to a global objective function, which

is identified by iteratively refining an initial solution.

2.3.1 Standard k-Means Algorithm

Standard k-means is the most widely used partitional clustering algorithm. It employs an

iterative relocation scheme to produce a k-way hard clustering that locally minimises the

distortion between the data objects and a set of k cluster representatives. Each represen-

tative, referred to as a centroid, is computed as the mean vector of all objects assigned

to a given cluster. In the classical version of the algorithm, distortion is measured using

15



1. Create an arbitrary initial clustering with centroids {µ1, . . . , µk}.

2. For each object xi ∈ X :

1. Compute ||xi − µc|| for 1 ≤ c ≤ k.

2. Reassign xi to the cluster corresponding to the nearest centroid.

3. Update cluster centroids.

4. Repeat from Step 2 until a termination criterion is satisfied.

Figure 2.1: Standard batch k-means algorithm.

Euclidean distance, so that the goal of the clustering process becomes the minimisation of

the sum-of-squared error (SSE) between the objects and cluster centroids {µ1, . . . , µk}:

SSE(C) =
k∑

c=1

∑
xi∈Cc

||xi − µc||2 where µc =

∑
xi∈Cc

xi

|Cc|
(2.7)

While many variations of the basic algorithm exist, the most frequently applied version

for offline clustering is the batch k-means algorithm, generally attributed to Forgy (1965),

which involves a two-step process as shown in Figure 2.1. In the first step, each object

is reassigned to the closest cluster centroid. Once all objects have been processed, the

centroid vectors are updated to reflect the new cluster assignments. The iterative refine-

ment process is repeated until a given termination criterion is satisfied. Typically this

occurs when the assignment of objects to clusters no longer changes from one iteration to

another. Alternatively, the procedure may be terminated if the change in the evaluation

of Eqn. 2.7 between two successive iterations is less than a user-defined threshold.

Limitations

The SSE function (2.7) implicitly assumes that the clusters approximate a mixture of

Gaussians, such that each cluster is spherical in shape and data objects are largely con-

centrated near its centroid. Consequently, k-means will often fail to identify a useful

partition in cases where the clusters are non-spherical or differ significantly in size. As an

example, we consider the synthetic 2-spirals dataset (Jain & Fred, 2002a), which consists

of two elongated inter-woven clusters as shown in Figure 2.2(a). Due to the non-convexity

of these structures, k-means will tend to simply bisect them, resulting in a poor clustering

such as that given in Figure 2.2(b).

16



−2 −1 0 1 2
−2

−1

0

1

2

X

Y

Student Version of MATLAB

(a) Natural classes

−2 −1 0 1 2
−2

−1

0

1

2

X

Y

Student Version of MATLAB

(b) K-means clustering

Figure 2.2: Example where k-means fails to produce an accurate clustering when applied
to the 2-spirals dataset, due to the presence of complex cluster shapes.

The traditional objective for k-means can also give undue influence to outlying objects.

Their effect in centroid construction can lead to vectors that are not representative of the

underlying groups in the data, resulting in highly skewed clusters. Some authors have

proposed the introduction of an “outlier cluster”, which is used to hold objects that do

not fit well in any other cluster (Fischer & Buhmann, 2003). Others have suggested

repeatedly applying the clustering algorithm and removing poorly clustered data after

each run (Hautamäki et al., 2005). However, both approaches require the introduction

of an arbitrary threshold to determine whether an object is far enough from its current

centroid to be deemed an outlier. Another problem occurs when the iterative refinement

process results in the formation of empty clusters. A common strategy to deal with this

is to assign the most outlying object (i.e. furthest from its current centroid) to the empty

cluster. However, if the problem persists, it is more likely that the fault may lie with the

choice of clustering model, such as the use of an unsuitable value for k.

A well-documented issue relating to partitional algorithms in general is their sensitivity

to the choice of initial clusters (Creator et al., 1984). Since algorithms such as k-means can

easily become trapped at a local minimum, the starting point for the clustering process

can greatly affect the accuracy of the final solution. When the starting point is chosen

using a strategy that includes a stochastic element, this can often lead to the generation of

a variety of significantly different solutions over multiple runs on the same dataset, making

it difficult for a user to identify a single, definitive grouping of the data.

17



2.3.2 Related Algorithms

Since the k-means algorithm was originally introduced, numerous variations and extensions

have been proposed in the literature. We now summarise several notable variants that

have been proposed to address the short-comings of k-means discussed previously.

Generalised k-means

Rather than using Euclidean distance, the k-means algorithm may be extended to work

with other cost functions that encode some notion of object-representative similarity. As

noted previously, the cosine measure represents a more suitable metric for working with

high-dimensional text data. Using this measure, the clustering objective becomes to max-

imise the cohesion of the k clusters, which is equivalent to the sum of document-centroid

similarities (Zhao & Karypis, 2002):

Coh(C) =
k∑

c=1

∑
xi∈Cc

cos(xi, µc) (2.8)

Partitioning Around Medoids

To reduce the influence of outliers, many authors have suggested alternatives ways of

forming cluster representatives. A well-known example, the Partitioning Around Medoids

(PAM) algorithm (Rousseeuw, 1987), uses the most centrally located data object or medoid

of each cluster as a representative. After selecting k arbitrary initial medoids, the algorithm

tries to find an optimal set of representatives by repeatedly attempting to swap pairs of

objects, where one object is currently a medoid and one is not. Although this approach can

be more robust in some circumstances, the cost of required for each iteration is O(k(n−

k)2). This additional computational expense renders it unsuitable for large values of n

or k. Consequently, approximation methods have been proposed, such as CLARA (Ng &

Han, 1994), which operates on a small sample of the original data.

Spherical k-means

Dhillon & Modha (2001) suggested a slight variation of batch k-means suitable for ap-

plication to text data, where both feature vectors and centroids are L2-normalised. The

vectors may then be viewed as points lying on a high-dimensional unit sphere, while the

normalised centroids, referred to as “concept vectors”, can be viewed as representing the

18



topics present in each cluster. The algorithm seeks to maximise document-centroid simi-

larities based on dot products, which gives rise to the clustering objective:

Θ(C) =
k∑

c=1

∑
xi∈Cc

xi
T
µc

′ where µc
′ =

∑
xi∈Cc

xi∣∣∣∣∑
xi∈Cc

xi

∣∣∣∣ and ||xi|| = 1 (2.9)

After generating a clustering solution, the terms corresponding to the highest values in

the concept vectors can be used to provide interpretable cluster labels.

First variation k-means

Dhillon et al. (2002a) observed that centroid-based algorithms such as spherical k-means

often become quickly trapped at a poor local solution. To increase clustering accuracy, the

authors proposed incorporating a local search technique into the standard batch k-means

algorithm. Specifically, this involves examining all “first variations”, which refers to the

set of possible partitions that may be produced from an existing partition by re-assigning

a single object to an alternative cluster. The variation leading to the largest improvement

in the clustering objective function is subsequently chosen as the partition for the next

iteration. This concept can be expanded to consider the search for a chain of first variations

that lead to the greatest overall increase in the objective function. For practical purposes,

a “ping-pong” strategy can be employing that alternates between spherical k-means and

the first variation approach. The use of the latter allows the clustering procedure to move

away from poor local solution, leading to a better final clustering. However, the application

of multiple first variation iterations can be very computationally expensive when working

with large datasets (Zhong, 2005).

Fuzzy c-means

Dunn (1974a) proposed a generalisation of standard k-means, the Fuzzy c-means (FCM)

algorithm, which allows objects to belong to different clusters to certain degrees as ex-

pressed by probabilistic weights. These weights may be represented in the form of a n× k

matrix V, where Vij ∈ [0, 1] denotes the degree of membership of the object xi in clus-

ter Cj , and
∑

j Vij = 1. Once again, the task of clustering is to minimise the distortion

between objects and centroids, which is now measured by the fuzzy criterion function

F (C,V) =
n∑

i=1

k∑
j=1

Vij
m ||xi − µj ||2 (2.10)

19



where the exponent m > 1 controls the fuzziness of object memberships. In this algorithm,

centroids are computed using:

µj =
∑n

i=1 Vij
mxi∑n

i=1 Vij
m (2.11)

As noted previously, Euclidean distortion is often inappropriate for text data. To address

this problem in the context of fuzzy clustering, Kummamuru et al. (2003) proposed a fuzzy

version of the spherical k-means algorithm, which seeks to maximise intra-cluster cosine

similarities on unit length document vectors.

EM clustering

Another well-known soft partitional clustering technique is the Expectation Maximisation

(EM) algorithm (Dempster et al., 1977). Unlike the other techniques described here, this

algorithm takes a model-based approach to identifying groups in data. Formally, EM

clustering is based on the assumption that the data objects are generated using a model θ

which consists of a mixture of k underlying probability distributions {θ1, . . . , θk}. The task

of clustering can then be viewed as the problem of determining the most likely parameters

for the model, where each component in the mixture represents a cluster. The likelihood

of an object xi is given by:

P (xi|θ) =
k∑

c=1

P (Cc)P (xi|Cc)

In the standard formulation of the algorithm, the k distributions are assumed to be Gaus-

sians, so that the problem becomes the approximation of the mean and covariance of each

component. In practice, the algorithm begins with an initial estimate for the model param-

eters and subsequently applies an iterative optimisation approach that alternates between

two steps: firstly identify the expected value of the log likelihood with respect to the

current parameter estimates, then find new parameter values to maximise this likelihood.

Once the algorithm has converged to a local solution, each data object is probabilistically

assigned to each cluster based on the estimated distributions. As with standard k-means,

the choice of initial clusters can have a considerable effect on the accuracy of the final

solution. EM clustering has been widely used in many applications, including document

clustering (Liu et al., 2002).

20



2.3.3 Initialisation of Partitional Algorithms

As noted previously, the choice of a suitable initialisation strategy for a given clustering

task is highly important when employing k-means. A number of different strategies have

been proposed in the literature, the most common of which are summarised here.

Random initialisation: Most frequently, initialisation is performed by simply randomly

dividing the data into k disjoint subsets. However, this can often lead to highly

inconsistent results over many trials.

Forgy initialisation: In this approach, k data objects are selected at random as seeds,

and the remaining objects are assigned to the nearest seed (Forgy, 1965).

MacQueen initialisation: A similar strategy was described by MacQueen (1967), which

also involves randomly selecting k objects to act as initial centroids. Each remaining

object is then assigned to the nearest centroid. However, in this case the centroid

vectors are recalculated after each reassignment.

Furthest-first initialisation: This popular strategy is based on the assertion that, since

clusters represent distinct groups in a feature space, a set of cluster seeds should be

chosen to be as well-separated as possible. To achieve this, an initial seed is chosen

at random and each additional seed is determined by finding the unassigned object

which is furthest from the previously selected seeds (Hochbaum & Shmoys, 1985).

The process continues until k seeds have been selected. Variations of this approach

have been proposed that involve selecting the first seed to be the mean of the dataset,

the object closest to the mean or the object whose feature vector has the maximum

norm (Katsavounidis et al., 1994).

Subset furthest-first initialisation: In general, the furthest-first method tends to be

sensitive to the presence of outliers, since the selection of objects that are most

distant will often result in the selection of seeds that are not representative of the

true clusters. To address this, Turnbull & Elkan (2005) proposed randomly sampling

a subset of the data to remove as many outliers as possible, and applying the furthest-

first technique to the selected subset.

While many of the more complex initialisation strategies can lead to improvements on

certain types of data, in other situations they can produce clusterings that are on average

less accurate than those produced using simple random initialisation.

21



2.4 Hierarchical Clustering Methods

Instead of generating a flat partition of data, it may often be useful to construct a hierar-

chy of concepts by producing a set of nested clusters that may be arranged to form a tree

structure. While partitional clustering methods have received more attention in recent lit-

erature, hierarchical clustering algorithms represent the traditional choice for performing

document clustering, since text collections often contain broad themes that may be natu-

rally sub-divided into more specific topics. Hierarchical algorithms are generally organised

into two distinct categories:

Agglomerative: Begin with each object assigned to a singleton cluster. Apply a bottom-

up strategy where, at each step, the most similar pair of clusters are merged.

Divisive: Begin with a single cluster containing all n objects. Apply a top-down strategy

where, at each step, a chosen cluster is split into two sub-clusters.

In either case, the resulting hierarchy may be presented visually using a tree-like structure

referred to as a dendrogram, which contains nodes for each cluster constructed by the clus-

tering algorithm, together with cluster relations illustrating the merge or split operations

that were performed during the clustering process. Figure 2.3 provides a simple example

of an agglomerative clustering process applied to a set of five data objects, together with

the corresponding cluster assignments. It is worth noting that, as each merge operation

is performed, the similarity between the chosen pair of cluster decreases.

Unlike the requirement in most partitional algorithms to specify a value for the number

of clusters k in advance, hierarchical algorithms support the construction of a tree from

Si
m
ila
rit
y

C = {{x1},{x2},{x3},{x4},{x5}}

C = {{x1},{x2,x3},{x4},{x5}}

C = {{x1},{x2,x3},{x4,x5}}

C = {{x1,x2,x3},{x4,x5}}

C = {{x1,x2,x3,x4,x5}}

x1 x2 x3 x4 x5

k = 2

Figure 2.3: Example dendrogram representing an agglomerative clustering of five data
objects, together with the corresponding cluster memberships.

22



which a user may manually select k by examining the resulting dendrogram and identifying

an appropriate cut-off point (Milligan & Cooper, 1985). For instance, by cutting the tree

in Figure 2.3 at the level indicated, we can derive a clustering of the data for k = 2 from

the two leaf nodes at that level.

2.4.1 Agglomerative Algorithms

Agglomerative hierarchical clustering (AHC) involves the construction of a tree of clusters

from the bottom upwards. A variety of agglomerative algorithms have been proposed,

such as BIRCH (Zhang et al., 1996) and CURE (Guha et al., 1998), which are suitable

for specific types of data. However, we focus on the standard formulation that has widely

been used in document clustering (Voorhees, 1986), which proceeds as follows:

1. Assign each object to a singleton clusters.

2. Update the pairwise inter-cluster similarity matrix.

3. Identify and merge the most similar pair of clusters.

4. Repeat from Step 2 until a single cluster remains or a given termination criterion

has been satisfied.

When an estimation for the number of clusters k is given in advance, the algorithm may

be terminated when the required number of leaf nodes remain in the dendrogram.

A variety of linkage strategies exist for determining which pair of clusters should be

merged from among all possible pairs. While these strategies are typically expressed in

terms of distances, they may be easily adapted to use similarity values such as those

produced by the cosine measure. Given a symmetric matrix S ∈ IRn×n, where Sij denotes

the similarity between a pair of objects xi and xj , the most popular linkage strategies for

document clustering are defined as follows:

Single linkage: The most common strategy, also known as the nearest neighbour tech-

nique, defines the similarity between two clusters (Ca, Cb) as the maximum similarity

between an object assigned to Ca and an object assigned to Cb:

sim(Ca, Cb) = max
xi∈Ca,xj∈Cb

Sij

While this approach is widely used, it can often produce clusters of poor quality

as it is subject to the phenomenon of “chaining”, where singletons are repeatedly

23



merged with an existing cluster, resulting in one large, elongated cluster with highly

dissimilar objects at either end.

Complete linkage: The similarity between two clusters (Ca, Cb) is defined as the mini-

mum similarity between an object assigned to Ca and an object assigned to Cb:

sim(Ca, Cb) = min
xi∈Ca,xj∈Cb

Sij

This strategy tends to favour strongly compact, tightly coupled clusters and is often

highly sensitive to the presence of outliers.

Average linkage: The similarity between a pair of clusters (Ca, Cb) is calculated as the

mean similarity between objects assigned to Ca and objects assigned to Cb:

sim(Ca, Cb) =

∑
xi∈Ca

∑
xj∈Cb

Sij

|Ca| |Cb|

This strategy is often referred to as unweighted pair group method using arithmetic

averages (UPGMA), since normalising by cluster size has the effect of giving equal

weights to objects that are assigned to clusters of different sizes.

Min-max linkage: Ding & He (2002) suggest the use of a novel graph partitioning objec-

tive, the min-max criterion (see Section 2.6.1), as a means of assessing the similarity

between two clusters:

s(Ca, Cb) =
∑

xi∈Ca

∑
xj∈Cb

Sij and sim(Ca, Cb) =
s(Ca, Cb)

s(Ca, Ca)s(Cb, Cb)

In agglomerative clustering, this linkage strategy has the tendency of merging similar

clusters with low self-similarities to produce larger, more balanced clusters, with high

self-similarity.

Clearly, the choice of linkage strategy can significantly affect the structure of the clusters

that are generated by AHC. As a consequence, the prior selection of a suitable strategy

for a given dataset may represent a non-trivial parameter selection problem. In practice,

a user may generate several hierarchies using different approaches, and manually inspect

the results to choose the most appropriate solution.

Limitations

A substantial drawback of standard agglomerative algorithms is that poor decisions made

early in the clustering process can greatly influence the accuracy of the final solution.

24



Without the use of a global objective function, many potential mergers at these stages

may appear to be equally valid. Once a merging decision has been made, there exists no

facility to rectify an erroneous choice at a later stage. On the contrary, the adverse effects

of these decisions are often exaggerated as the clustering process continues. In addition to

deficiencies in clustering accuracy, hierarchical clustering algorithms are generally consid-

erably more computationally costly than their partitional counterparts, typically having

time complexity O(n3).

2.4.2 Divisive Algorithms

In contrast to agglomerative methods, divisive hierarchical clustering involves building a

cluster tree from the root node downwards.

1. Assign all data objects to a single cluster.

2. Select a cluster to split.

3. Replace the selected cluster with two new sub-clusters.

4. Repeat from Step 2 until k leaf clusters have been generated or a given termination

criterion has been satisfied.

Several authors have empirically shown divisive algorithms to be superior to agglomerative

techniques on text data (Ding & He, 2002). In addition, these algorithms are often less time

consuming than traditional bottom-up clustering. However, in general, they have been

employed less frequently due to the non-trivial problems of selecting a cluster to split and

finding the optimal sub-division of the chosen cluster. We now describe two representative

divisive algorithms that have been primarily employed for document clustering.

Bisecting k-means

As a representative example of divisive clustering, we consider the algorithm proposed by

Steinbach et al. (2000) for use on text data, which combines aspects of hierarchical and

partitional clustering. Initially, all documents are assigned to a single root cluster. The

algorithm involves repeatedly selecting an existing cluster and splitting the cluster into

two sub-clustering using the generalised k-means algorithm with cosine similarity. The

process is repeated until k clusters have been obtained. To split a cluster, a fixed number

of randomly-initialised bisections τ may be performed, from which the best candidate

25



1. Assign all n objects to a single cluster.

2. Select a cluster Cc to split according to a chosen splitting criterion.

3. Generate τ 2-way partitions of the cluster Cc using randomly initialised k-means.

4. Replace Cc with the best pair of clusters as determined by a given clustering criterion.

5. Repeat from Step 2 until k leaf clusters have been generated.

Figure 2.4: Bisecting k-means (BKM) algorithm.

is selected. This choice is determined by a cluster evaluation criterion, such as mean

document-centroid cosine similarity:

Cen(Cc) =

∑
xi∈Cc

cos(xi, µc)
|Cc|

(2.12)

A larger value for τ renders the algorithm less sensitive to the choice of initial clusters

than the partitional algorithms described in Section 2.3, although it does increase the

computational cost of applying the algorithm. A summary of the complete procedure is

given in Figure 2.4.

Several strategies have been proposed to identify the most appropriate cluster to split.

A näıve approach is to divide the largest cluster into two sub-clusters at each stage (Stein-

bach et al., 2000). However, this may be inappropriate when working with text corpora,

which frequently contain “unbalanced” clusters that differ in their relative proportions.

An alternative strategy is to split the cluster with maximal distortion or minimal cohesion,

as measured by Eqn. 2.8. For instance, Ding & He (2002) suggested selecting the cluster

with the minimum mean intra-cluster pairwise similarity, computed by:

Intra(Cc) =

∑
xi,xj∈Cc

cos(xi, xj)

|Cc|2
(2.13)

Given k potential candidates for splitting, Zhao & Karypis (2002) proposed evaluating

all possible candidates and selecting the split that leads to the best subsequent partition

containing k+1 clusters. However, this approach requires significantly more computational

time than the standard formulation of the algorithm.

Principal Direction Divisive Partitioning

The well-known Principal Direction Divisive Partitioning (PDDP) algorithm (Boley, 1998)

provides an efficient means of producing a hierarchy of clusters using a non-iterative ap-

26



1. Assign all n objects to a single cluster.

2. Select a cluster Cc to split, such that the cluster has the highest level of intra-cluster
scatter.

3. Calculate the principal direction uc of the matrix representation of the cluster Cc,
and its centroid µc.

4. Partition Cc into two sub-clusters (Ca, Cb) such that, for each original xi ∈ Cc:

xi ∈
{

Ca if fc(xi) ≤ 0
Cb otherwise.

where the projection fc(xi) = uc
T
(xi − µc)

5. Repeat from Step 2 until k leaf clusters have been generated.

Figure 2.5: Principal Direction Divisive Partitioning (PDDP) algorithm.

proach based on the concepts employed in Principal Component Analysis (PCA) (see

Section 2.6 for more details regarding PCA). The principal direction of a cluster of docu-

ments Cc, denoted by uc, is defined as the leading eigenvector of the covariance matrix of

Cc. In practice, given a sparse term-document matrix A representing an entire dataset, it

proves more efficient to compute the leading left singular vector of the normalised matrix

constructed according to:

Mc = Ac − µc1
T

where Ac is a sub-matrix of A with columns corresponding to the document vectors in

Cc, µc is the cluster centroid, and 1 = [1, . . . , 1] is a n-dimensional vector of ones. Note

that each document vector is assumed to be scaled to unit length.

The algorithm commences by splitting the entire document collection into two clusters.

This is done by projecting each document vector onto the principal direction of A and

examining the resulting values. A binary tree of clusters is subsequently constructed by

recursively splitting clusters in the same manner until the desired number of clusters is

obtained. At each stage, the cluster for splitting is chosen to be the candidate Cc having

the highest intra-cluster scatter, as measured by the Frobenius norm ||Mc||2F. A summary

of the complete algorithm is provided in Figure 2.5.

PDDP has been widely used for document clustering, although recent work has shown

that the algorithm can often perform poorly in the presence of overlapping clusters (Kru-

engkrai et al., 2004) and that clustering on a larger number of singular vectors can often

lead to superior results (Shi & Malik, 2000). As with bisecting k-means, the selection of an

27



appropriate cluster for splitting can significantly affect the quality of the final clustering

solution.

2.5 Unsupervised Dimension Reduction

2.5.1 Motivation

Like many machine learning methods, clustering algorithms are susceptible to the “curse

of dimensionality” (Bellman, 1961), as additional information in the form of a larger

feature set does not necessarily improve their ability to accurately partition data. Rather,

algorithm performance often deteriorates significantly in the presence of many irrelevant

or redundant features. As a result, classical clustering techniques working on document

collections are faced with major obstacles due to the high-dimensional nature of this type

of data. Some of these problems are due to lexical ambiguities which are endemic in

natural languages, while others arise from the choice of representation or algorithm used

in the clustering process. The most commonly observed problems are:

1. Sparsity. As discussed in Section 2.2.2, documents in text corpora are generally

represented by large vectors, where each entry corresponds to a unique feature.

While a typical feature vector will often contain 10,000 or more entries, for real-

world corpora the vast majority of these values will be zero (typically 95-99%) since

most terms will occur in very few documents. The inherent sparsity of documents

when represented in a high-dimensional space can make it difficult for an algorithm to

find any structure in the data. In particular, as the number of dimensions increases,

document vectors tend to become equally similar to one another, thereby impairing

an algorithm’s ability to correctly discriminate between documents that are truly

related and those that have little or no conceptual relation.

To illustrate this, Figure 2.6 provides histograms for intra-class and inter-class pair-

wise similarity values for the bbc dataset (see Section 5.2.1 for details regarding this

corpus). The vector space model for this corpus contains 5570 unique dimensions

after preprocessing. Due to the sparsity of the representation, the cosine similarities

between the majority of pairs of documents are very low, even for pairs that belong

to the same natural class, thus making the successful identification of the classes

difficult.

28



(a) Intra-class similarities (b) Inter-class similarities

Figure 2.6: Histograms for intra-class and inter-class pairwise cosine similarity values
generated on the bbc corpus, which illustrate the problem of sparsity in text data.

2. Synonymy. The problem of sparsity can become significantly worse when using the

vector space model, due to the assumption that terms are independent of one an-

other. In reality this is rarely the case, as it is common for natural languages to use

many different words to refer to identical or closely related concepts (e.g. ‘residence’

and ‘abode’). Some authors have suggested the use of synonym lists from a thesaurus

such as the WordNet1 database to provide external information regarding relations

between terms (Sedding & Kazakov, 2004). However, these resources are usually

limited to a general-purpose vocabulary and may have little effect when working

with specialised document collections, such as biomedical literature, where the ma-

jority of the discriminating terms will not be present in the thesaurus. The cost of

constructing an appropriate list of synonyms for a specific domain may out-weigh

the benefits of its use.

3. Polysemy and Homonymy. A more complex problem occurs when a single word

has either multiple related meanings (polysemy) or has a number of different mean-

ings that are completely unrelated (homonymy). For certain languages, the use of

context information is often crucial in distinguishing between the various senses of

a word. While this occurs less frequently in the English language, both polysemy

(e.g. ‘review’ as a noun or as a verb) and homonymy (e.g. ‘pupil’ referring to a school

student or a part of the eye) will still present significant problems for text mining

algorithms. Since the standard vector space model does not retain context infor-
1http://wordnet.princeton.edu/

29



Figure 2.7: Mean running time (in seconds) for the k-means algorithm when applied to
the bbc dataset. Observe that the computational cost increases significantly as additional
features are added to the data model.

mation, algorithms that operate directly on a term-document matrix will often be

unable to disambiguate word senses.

4. Scalability. The computational cost of many popular text mining procedures is

largely dependent upon the number of dimensions m in the data. To illustrate

this, Figure 2.7 shows the mean running time in seconds for a single execution of

the standard k-means algorithm on the bbc dataset. As the number of features

used to represent the documents increases, the time required also significantly in-

creases. This effect is magnified when employing more computationally complex

algorithms. While sparse matrix representations may be used to significantly in-

crease algorithm efficiency, the level of improvement is highly dependent upon the

sparsity of a dataset’s term-document matrix. In addition, the overhead required

to store the matrix can sometimes be prohibitive, so that for larger datasets it may

become necessary to load only a small segment of the full matrix into memory at

any one time.

To address these issues, dimension reduction techniques have been widely employed in

machine learning tasks to reduce the number of features used to represent data. In cluster

analysis, they commonly constitute part of a preprocessing phase applied prior to running

a clustering algorithm. Potential benefits of reducing the dimensionality of text data

include:

30



1. Improved performance. Removing redundant or noisy terms may provide a clearer

picture of the true relations between documents in a corpus, leading to higher clus-

tering accuracy. By compensating for linguistic problems such as synonymy and

polysemy, we can also discover hidden semantic relations in the data that are not

apparent from examining the original term frequency values.

2. Economy of representation. Dimensionality reduction can be viewed as a compres-

sion procedure, providing a more compact representation of the data. This can

greatly improve the scalability of computationally complex clustering algorithms by

reducing running time and storage requirements.

3. Visualisation. The output of a clustering algorithm can often be impossible to visu-

alise due to the inherent problem of presenting high-dimensional spaces to humans.

To address this, dimension reduction techniques have been widely used to aid vi-

sualisation in data exploration applications. In practice, this involves selecting 2–3

relevant dimensions, or projecting the original data to a lower 2-dimensional or 3-

dimensional space, which can often help to illustrate the spatial relations between

documents and cluster structures.

We now outline two general approaches used in many machine learning problems to reduce

the dimensionality of data.

2.5.2 Feature Selection

Feature selection is concerned with locating the “best” minimum subset of the original

dimensions. By eliminating unnecessary features, the size of the model used to represent

the data can be significantly reduced. Feature selection has been widely employed in

supervised learning tasks, such text classification (see Dash & Liu, 1997). These meth-

ods typically incorporate a search strategy for exploring the space of feature subsets, and

can generally be divided into two broad categories based on the approach used to eval-

uate subsets (John et al., 1994): wrapper schemes make use of the learning algorithm

itself to choose a set of relevant features, while filter schemes attempt to remove features

prior to applying the algorithm. The popularity of these techniques has motivated the

development of analogous methods for unsupervised learning, including wrappers around

partitional clustering algorithms (Dy & Brodley, 2000) and information theoretic filter

strategies (Dash & Liu, 2000). However, the absence of class information or any definitive

31



subset evaluation criterion can significantly limit the usefulness of these techniques. In

addition, the application of a costly optimisation procedure may often be prohibitive for

large, very high-dimensional datasets such as text collections. For example, although the

filter approach proposed by Dash & Liu (2000) is based on a heuristic search procedure,

this process requires time O(mn2), which will impractical for all but the smallest cor-

pora. Consequently, the use of complex subset search selection has been very limited for

document clustering tasks.

Simpler, more efficient ranking strategies have been more frequently applied to improve

the efficiency of text mining algorithms. These avoid the need for computationally expen-

sive search procedures by assigning weights to individual terms indicating their relevance,

and subsequently selecting from a ranked list those terms whose weight is above a certain

threshold. In classification tasks, popular term ranking criteria, such as information gain

(Quinlan, 1993) and the χ2 statistic (Yang & Pedersen, 1997), can produce weights that

discriminate between a fixed number of categories in a training set. For clustering, the lack

of class information requires that evaluations are carried out using less sophisticated mea-

sures, which are often based upon the tf-idf weighting functions described in Section 2.2.3.

For instance, Yang & Pedersen (1997) suggested simply weighting features inversely based

on their document frequency values, while Tang et al. (2005) computed the mean tf-idf

value for each term across all documents in a corpus under the assumption that terms

with a higher average value will have more discriminating power. Several authors have

employed term variance quality (Dhillon et al., 2002b), which rewards features that exhibit

high variance in frequency across different documents. Given a term-document matrix A

containing raw frequency values, this criterion computes a weight for the i-th term using

the expression:

wi =
n∑

j=1

Aij
2 − 1

n

 n∑
j=1

Aij

2

(2.14)

Empirical research has shown that, without the provision of information to discriminate

between terms and classes, unsupervised techniques will often perform poorly when terms

a removed beyond a certain point (Liu et al., 2003a). In general, the performance of

ranking strategies is often highly dependent on a user selecting an appropriate threshold

or cut-off point below which terms are rejected.

32



2.5.3 Feature Extraction

Feature extraction methods take an alternative approach to dimension reduction by apply-

ing a linear or non-linear transformation to map the original data to a new, low-dimensional

representation, while attempting to preserve as much information as possible about the

structure of the original data. The most popular unsupervised approach, Principal Com-

ponent Analysis (PCA) (Pearson, 1901), is a linear technique that projects data onto a

reduced set of orthogonal dimensions. Formally, given a covariance matrix C, the new

dimensions, referred to as principal components (PCs), are constructed from the eigen-

vectors of C such that the j-th PC is given by the eigenvector corresponding to the j-th

largest eigenvalue of C. By identifying the set of projection directions containing the

largest variance and discarding the rest, PCA can reduce redundancy while minimising

the reconstruction error. An example is provided in Figure 2.8, which shows 2-dimensional

and 3-dimensional embeddings for a two class subset of the bbc corpus. By projecting the

documents from the original high-dimensional vector space to the leading principal com-

ponents, it is possible to identify two well-defined clusters corresponding to the topics.

PCA has proved useful in many domains, ranging from gene expression analysis (Ray-

chaudhuri et al., 2000) to image processing applications such as face recognition (Sirovich

& Kirby, 1987). A related technique, Latent Semantic Indexing (LSI) (Deerwester et al.,

1990), has been widely employed for dimension reduction in information retrieval to un-

cover hidden patterns in text collections, which would otherwise be obscured by the lin-

guistic problems described previously. Other well-known methods in this area include

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

PC1

P
C

2

Student Version of MATLAB

(a) Projection onto top 2 leading PCs.

−1
−0.5

0
0.5

1
1.5

−1

0

1

2

−0.5

0

0.5

1

PC1PC2

P
C

3

Student Version of MATLAB

(b) Projection onto top 3 leading PCs.

Figure 2.8: Visualisation of the ‘business’ and ‘sport’ topics from the bbc corpus, based
on an embedding constructed from 2–3 leading principal components (PCs).

33



Independent Component Analysis (ICA) (Comon, 1994), which attempts to map the data

to a set of statistically independent variables that are not necessarily orthogonal, and

Random Projection (RP) (Bingham & Mannila, 2001), which applies an efficient linear

transformation to produce a small set of approximately orthogonal dimensions. However,

these latter approaches have not been frequently applied to text data.

One notable drawback of extraction techniques such as PCA and LSI is the loss of

interpretability resulting from the fact that the newly formed dimensions may not nec-

essarily have any physical meaning. From a knowledge discovery perspective, this may

not be acceptable as it limits the degree to which a clustering solution can be explained,

either with regard to the content of the clusters or to how the clusters were derived. We

discuss this issue further in Section 6.2. In general, the computational and performance

advantages of extraction-based reduction have made such methods far more prevalent

than feature selection strategies in recent clustering literature. In the next two sections

we provide detailed descriptions of two state-of-the-art extraction approaches that have

been successfully applied to text data.

2.6 Spectral Clustering

Motivated by work in graph theory, unsupervised feature extraction methods have been

developed that employ well-known techniques from linear algebra to analyse the spectral

properties of a graph representing a dataset. In practice, this involves constructing a re-

duced dimensional space from the eigenvalue decomposition (EVD) of a matrix form of

the graph. Existing clustering algorithms may subsequently be applied in the reduced

space to uncover the underlying classes in the data. Spectral clustering methods have

been widely used due to their efficiency and applicability in a variety of tasks, including

image segmentation (Shi & Malik, 2000), gene expression analysis (Kluger et al., 2003)

and document clustering (Dhillon, 2001). In this section we examine the theoretical un-

derpinnings of spectral clustering and consider several algorithms that may be relevant in

reducing the dimensionality of text data.

2.6.1 Graph Partitioning

As noted previously, a common way of expressing the relations between pairs of data ob-

jects is to use a symmetric similarity or affinity matrix S, where Sij denotes the association

34



between the objects xi and xj . The task of producing a disjoint clustering may then be

modelled as a graph partitioning problem, where S becomes the adjacency matrix for a

weighted undirected graph G(V, E). In this model, the set of vertices V represents the

data objects and the set of edges E represents pairwise similarities between objects. Given

this graph-theoretic formulation, we seek to find a k-way partition C = {C1, . . . , Ck} of

the vertices of G that optimises a particular objective function or cost criterion. We now

enumerate several criteria that have been commonly used in graph partitioning, which are

also relevant to the theoretical motivations for spectral clustering.

Minimum cut: The simplest approach for evaluating the quality of a two-way partition,

the minimum cut criterion, measures the weight of the edges crossing the parti-

tion. The optimisation of this objective may be viewed as the task of identifying

a separator such that as few edges as possible must be removed from the graph to

produce two disconnected sub-graphs (i.e. two disjoint clusters). Formally, we seek

a bi-partition (C1, C2) of the graph vertices such that C1 ∪C2 = V, which minimises

the sum of the weights of edges connecting the two clusters, as denoted by:

s(C1, C2) =
∑

i∈C1,j∈C2

Sij (2.15)

This expression shows that the weight of the cut is directly proportional to the

number of edges that join the two sub-graphs. Consequently, the criterion favours

small groups of isolated vertices. This makes it sensitive to outliers and often leads

to highly unbalanced clusterings.

Ratio cut: To address the shortcomings of Eqn. 2.15, the ratio cut criterion (Pothen

et al., 1990) has frequently been employed for bi-partitioning. This measure seeks

to minimise the edge cut, while balancing the sizes of the clusters in the partition.

Rcut(C1, C2) =
s(C1, C2)
|C1|

+
s(C1, C2)
|C2|

(2.16)

Chan et al. (1994) generalised the two-way ratio cut metric to evaluate a partition

C consisting of k clusters:

KRcut(C) =
k∑

i=1

s(Ci,V\Ci)
|Ci|

(2.17)

Normalised cut: Shi & Malik (1997) proposed a more robust measure for assessing bi-

partitions, the normalised cut criterion, which measures the degree of association

35



between a cluster and the remaining vertices, relative to the total association within

that cluster. This normalisation makes the criterion less sensitive to the presence of

outlying objects. Formally, the criterion can be calculated using the expression:

Ncut(C1, C2) =
s(C1, C2)
s(C1,V)

+
s(C1, C2)
s(C2,V)

(2.18)

Yu & Shi (2003) subsequently generalised this objective for k-way partitioning:

KNcut(C) =
k∑

i=1

s(Ci,V\Ci)
s(Ci,V)

(2.19)

Min-max cut: Ding et al. (2001) proposed a graph partitioning criterion which aims to

evaluate the common clustering objectives of maximising intra-cluster associations

while simultaneously minimising inter-cluster associations. These objectives may be

satisfied by minimising the expression:

MMcut(C1, C2) =
s(C1, C2)
s(C1, C1)

+
s(C1, C2)
s(C2, C2)

(2.20)

This measure favours clusters of approximately equal size. It may be extended to k

clusters by computing the sum of Eqn. 2.20 over all pairs of clusters, which can be

simplified to:

KMMcut(C) =
k∑

i=1

s(Ci,V\Ci)
s(Ci, Ci)

(2.21)

2.6.2 Spectral Bi-partitioning

Unfortunately, the problem of finding an optimal partition according to the criteria de-

scribed in the previous section is NP-complete. While traditional techniques such as the

Kernighan-Lin algorithm (Kernighan & Lin, 1970) have been used to produce local approx-

imations, such methods often have drawbacks in terms of partition accuracy. Rather than

directly attempting to optimise a given criterion, many authors have sought to transform

the optimisation task into a generalised eigenvalue problem. Given a symmetric adjacency

matrix S, this involves computing its eigenvalue decomposition:

S = VΛV
T

where the diagonal entries of Λ represent the set of eigenvalues and the columns of V are a

corresponding set of orthogonal eigenvectors. Unlike local partitioning methods, analysing

the spectrum of S allows grouping to be performed based on global information describing

the structure of the corresponding graph.

36



Early work in this area was performed by Donath & Hoffman (1973) and Fiedler (1973),

who first suggested a connection between the problem of finding vertex separators for a

graph and the eigenvalue decomposition of its corresponding Laplacian matrix L = D−S,

where D denotes a diagonal degree matrix such that Dii =
∑n

j=1 Sij . The Laplacian

of a graph G containing n vertices is symmetric positive semi-definite, with non-negative

eigenvalues 0 = λ1 < λ2 < · · · ≤ λn and corresponding eigenvectors {v1, . . . , vn}. The most

important common observation made by these authors was that the spectrum of a graph

provides useful structural information that may indicate how best to partition its vertices.

The use of spectral partitioning was popularised by the proposal of a formal technique by

Pothen et al. (1990). Following the work of Hall (1970), a bi-partition (C1, C2) of G may

be represented by a membership indicator vector q = {q1, . . . , qn} such that:

qi =

 +1 if i ∈ C1

−1 if i ∈ C2

If the adjacency matrix S has a block-diagonal structure (i.e. the rows can be reorganised

by cluster membership to form a checker-board pattern), we can optimise the minimum

cut (2.15) by finding a clustering that minimises the sum of the weights in the off-diagonal

blocks. The problem can be formulated as the search for a vector q that minimises:

argmin
q

n∑
i,j=1

Sij(qi − qj)2 such that
∑
i=1

q2
i = 1

This objective can also be expressed in quadratic form using the Laplacian L:

argmin
q

q
T
Lq

Rather than solving this as a complex combinatorial problem, a solution may be found by

relaxing the requirement on q to contain discrete values, so that the assignment of each

vertex is continuous, with membership weights taking real values in the range [−1, 1]. The

partition approximating the minimal cut can then be found by examining the eigenvectors

of L. Specifically, the relaxed membership weights are calculated as the components of

the eigenvector v2 corresponding to the second smallest eigenvalue λ2 of the Laplacian

(i.e. the first non-trivial eigenvector), which is often referred to as the Fiedler vector.

A variety of justifications for partitioning based on v2 are given in the literature.

Fiedler (1973) showed the association between its corresponding eigenvalue λ2 and the

edge connectivity of a graph, while Pothen et al. (1990) demonstrated a relationship

37



Class Doc Content
business b1 record company profits

b2 company profits fall
b3 company takeover bid

football f1 world cup football
f2 champions league football
f3 world cup soccer

Table 2.1: Small dataset consisting of six short text fragments relating to two topics.

between the edge separator induced by v2 and the isoperimetric number of a graph, which

represents the value of the smallest possible edge cut over all candidate separators. The

latter has motivated several popular spectral bi-partitioning algorithms. In these, the

vertices are sorted according to the values in v2, and those vertices with values below

a chosen threshold, such as 0, the mean value or the median value, are assigned to one

cluster, with the remaining vertices assigned to the second cluster.

To illustrate this approach, we consider the small dataset shown in Table 2.1, which

consists of six short text fragments belonging to two disjoint classes which relate to busi-

ness and football/sport respectively. While these documents are trivial to group by man-

ual inspection, the example raises several interesting problems for automatic clustering.

Specifically, even with such a limited number of terms, the problems of synonymy and

sparsity are apparent. For instance, while the terms “football” and “soccer” are often

used inter-changeably, this knowledge is unavailable to the clustering algorithm and the

terms will be treated independently when using the vector space model. Consequently, the

documents f1 and f3 do not achieve a perfect similarity score using the cosine measure,

although they are conceptually identical. Likewise, the documents f2 and f3 will achieve

Affinity 
Matrix

EigenvectorLaplacian 
Matrix !v2





0.0
0.0
0.0
0.6
0.6
0.6





Bi-partition

C2 = { f1, f2, f3}

C1 = {b1,b2,b3}
b1
b2
b3
f1
f2
f3

Figure 2.9: Example illustrating the spectral bi-partitioning process for the small dataset
described in Table 2.1.

38



a similarity score of 0 as they share no common terms, even though they are related to

the same topic. To uncover the indirect associations between the documents, spectral

bi-partitioning may be applied as described previously. The entire bi-partitioning process

is shown in Figure 2.9. Observe that, by viewing the values in the Fiedler vector v2 as con-

tinuous membership indicators, the correct partition can be easily obtained by choosing a

separator based upon the mean value (v̄2 = 0.3).

Spectral methods have also been developed to optimise other, more robust graph par-

titioning criteria. Notably, Shi & Malik (1997) suggested a spectral approach to finding a

bisection that minimises the normalised cut criterion (2.18). A good approximation may be

identified in a manner similar to that described previously, but rather using the spectrum of

the normalised Laplacian matrix of the graph, which is defined as Ln = D− 1
2 (D−S)D− 1

2 .

Two clusters are formed from the normalised Fiedler vector by sorting the entries and

choosing a splitting point along the vector which results in the minimal value for Eqn. 2.18.

2.6.3 K-Way Spectral Clustering

In most cases, we will typically want to partition a dataset into more than two clus-

ters. Two general approaches have been proposed in the literature to extend spectral

bi-partitioning to the problem of k-way clustering. The first involves recursively applying

spectral bi-partitioning to hierarchically divide each resulting sub-graph until k clusters

have been recovered (e.g. Shi & Malik, 1997). However, if k is not a power of 2, it is

unclear as to how to choose which segments should be sub-divided.

A more effective approach involves directly producing a k-way partition by construct-

ing an embedding from multiple eigenvectors of the affinity matrix. However, rather than

using those vectors corresponding to the smallest eigenvalues, clustering may be performed

using the eigenvectors associated with the largest eigenvalues, which also contain struc-

tural information. A formal justification for the benefits of clustering in the reduced space

formed from these vectors was given in the polarisation theorem proposed by Brand &

Huang (2003). This theorem asserts that, as an affinity matrix S is projected onto smaller

subsets of successive leading eigenvectors, the angles between highly similar objects are

least distorted, while the angles between dissimilar objects tend to greatly increase. Con-

sequently, by magnifying the similarities between objects that belong to the same natural

class and attenuating the associations between objects belonging to different classes, the

clustering problem will often become easier to solve.

39



(a) Matrix for the original
high-dimensional data.

(b) Matrix for the k-way
spectral embedding (k = 5).

Figure 2.10: Pairwise cosine similarity matrices generated on the bbc corpus, illustrating
the exaggeration of the block diagonal structure resulting from k-way spectral embedding.

As an example, we consider the construction of a k-way embedding for the bbc dataset.

Figure 2.10(a) shows the block-diagonalised cosine similarity matrix generated on the

original high-dimensional feature space. Figure 2.10(b) shows the corresponding matrix

generated on the spectral embedding formed from the five leading eigenvectors of the

original similarity matrix. While the values in the latter are higher in general due to

the far lower level of sparsity in the embedded dimensions, it is particularly apparent

that there is a significant increase in intra-class similarity as evident from the prominent

blocks representing the natural classes in the data. To confirm this, Figure 2.11 provides

histograms for the intra-class and inter-class cosine similarity values computed using the

embedding. Note that these values now lie in the range [−1, 1] due to the presence of

negative values in the embedded dimensions. However, it is clear that the trends in these

(a) Intra-class similarities (b) Inter-class similarities

Figure 2.11: Histograms of pairwise cosine similarity values for the k-way spectral em-
bedding of the bbc corpus (k = 5), demonstrating the increase in intra-class similarity
values after the application of dimension reduction.

40



Original 
Dataset

K-way 
Clustering

Similarity 
Measure

Affinity 
Matrix

Spectral 
Embedding

k

nn

n

EVD 
Computer

Clustering 
Algorithm

Spectral Mapping Post-processingPre-processing

Figure 2.12: Workflow for the k-way spectral clustering process, which consists of three
phases: pre-processing, spectral mapping and post-processing.

histograms contrast sharply with those in the histograms produced on the original data

as shown in Figure 2.6. The exaggeration of intra-class and inter-class relations makes the

goal of accurately uncovering the underlying classes far more attainable.

K-way spectral clustering techniques generally consist of three principal phases, as

shown in Figure 2.12: preprocessing, spectral mapping and post-processing (Verma &

Meila, 2003). We now describe each of these phases individually and summarise the most

popular approaches that have been used to implement them.

Preprocessing: Initially, an affinity matrix S is constructed from the original data using

an appropriate metric, such as the Gaussian kernel function (see Section 2.8.2) for

image data or cosine similarity for text documents. As with bi-partitioning, various

normalisation techniques may be applied to S to support the optimisation of different

partitioning criteria. Most commonly, an approximation to the k-way normalised

cut (2.19) has been used, which is found by computing the truncated EVD of the

normalised affinity matrix given by:

Sn = D− 1
2 SD− 1

2 (2.22)

When using this objective, some authors have observed that removing the influence

of the diagonal values by setting Sii = 0 prior to decomposition results in improved

accuracy (e.g. Ng et al., 2001).

Spectral mapping: The second phase of the spectral clustering process involves com-

puting the eigenvalue decomposition of the normalised affinity matrix. Ng et al.

(2001) showed that, when partitioning data into k clusters, the use of eigenvectors

corresponding to the k largest eigenvalues affords the best discriminating power.

41



By stacking these vectors in columns to form Y ∈ IRn×k, a reduced-dimensional

representation is produced for the original n objects.

Post-processing: The columns of a k-dimensional spectral embedding Y can be viewed

as a set of k semantic variables. However, since these variables may take negative

values, they are not immediately interpretable as clusters. In simple cases where

the affinity matrix is approximately block diagonal, it may be possible to identify a

partition by inspecting the values in Y. However, for real-world data such as text

corpora some form of post-processing will be required to extract the final cluster

assignments.

A popular approach is to treat the rows {y1, . . . , yk} as points in a geometric space

IRk and apply a partitional algorithm, such as standard k-means, to cluster these

points. A final clustering of the original dataset may be derived by simply assigning

the object xi to the cluster Cj which contains the corresponding embedded point yj .

It has been shown the quality of this partition may often be improved by normalising

the rows of Y to L2 unit length prior to clustering (Ng et al., 2001). Several other

authors have focused on directly decomposing the selected eigenvectors into a set of

k clusters without the need for the subsequent application of a clustering algorithm

(e.g. Yu & Shi, 2003).

To illustrate how the three phases fit together, a summary of a popular representative

algorithm, Ng-Jordan-Weiss (NJW) clustering (Ng et al., 2001), is given in Figure 2.13.

2.6.4 Bipartite Spectral Co-clustering

The techniques described previously in this section focus solely on the problem of grouping

the objects in a dataset. However, in certain situations it may be useful to perform co-

clustering, where both objects and features are assigned to groups simultaneously. Such

techniques are related to the principle of the duality of clustering objects and features,

which states that a clustering of objects induces a clustering of features while a clustering

of features also induces a clustering of objects (Dhillon, 2001). The co-clustering problem

may be viewed as the task of partitioning a weighted bipartite graph. Formally, given a

text corpus, we build a graph G(V, E) such that V = VX ∪VT , where VX is a set of vertices

representing the n documents and VT is a set of vertices representing the m terms. An

edge (i, j) only exists if the j-th term occurs at least once in the document xi, where the

42



weight on that edge indicates the number of occurrences. We may conveniently represent

such a graph using a term-document matrix A.

While the methods in the previous section involve analysing the eigendecomposition

of an affinity matrix, for the bipartite case several authors have suggested the use of the

related singular value decomposition (SVD), which may be applied to rectangular matrices.

Formally, this involves decomposing a matrix A ∈ IRm×n into the product of three factors:

A = UΣV
T

(2.23)

The columns of the matrix U ∈ IRm×m are referred to as the left singular vectors, the

rows of V ∈ IRn×n are the right singular vectors, and the diagonal entries of Σ ∈ IRm×n

are called the singular values of A. Note that the left singular vectors are equivalent to

the eigenvectors of AA
T
, the right singular vectors are the eigenvectors of A

T
A and their

identical sets of eigenvalues are given by the diagonal of Σ2.

Dhillon (2001) suggested that an approximation for the optimal normalised cut of a

bipartite graph represented by a matrix A may be obtained by analysing the l = log2 k

leading singular vectors of the degree-normalised matrix given by:

An = D1
− 1

2 AD2
− 1

2 (2.24)

where D1 and D2 are diagonal matrices such that

[D1]ii =
n∑

j=1

Aij , [D2]jj =
m∑

i=1

Aij (2.25)

1. Construct an affinity matrix S ∈ IRn×n on the original data X , and set Sii = 0.

2. Form the normalised affinity matrix:

Sn = D− 1
2 SD− 1

2

3. Decompose Sn and construct an embedding Y ∈ IRn×k, such that the columns are
given by the eigenvectors corresponding to the k largest eigenvalues.

4. Normalise the rows of Y to L2 unit length.

5. Apply standard k-means to the rows of Y to generate a k-way clustering C.

6. Produce a clustering of X by assigning each object xi to the j-th cluster if yi ∈ Cj .

Figure 2.13: Ng-Jordan-Weiss (NJW) spectral clustering algorithm.

43



If A is a term-document matrix, the rows of the left truncated vectors Ul represent a l-

dimensional embedding of the terms, while the columns of the right truncated vectors Vl

represent an embedding of the documents. By selecting the leading vectors of the spectral

decomposition, we can produce a reduced-dimensional space that amplifies the natural

structures in the data. In this case, a unified embedding Z ∈ IR(m+n)×l is constructed by

normalising and arranging the truncated factors as follows:

Z =

 D1
−1/2Ul

D2
−1/2Vl


A partitional clustering algorithm, such as k-means, is then applied in the geometric space

Z to produce a simultaneous k-way partitioning of both documents and terms.

2.6.5 Limitations of Spectral Clustering

State-of-the-art k-way spectral clustering algorithms have become popular in the many

domains. However, their performance is highly sensitive to the selection of an appropriate

number of leading eigenvectors. A number of authors have suggested choosing k based on

the largest eigengap (e.g. Ng et al., 2001), which refers to the maximum difference between

any two consecutive eigenvalues (i.e. |λi − λi+1|). When considering this approach, it is

worth noting that both theoretical results and empirical observations suggest that spectral

clustering performs best in cases where the rows of the matrix representing the dataset can

be arranged in a block diagonal manner. Unfortunately, matrices representing real-world

text corpora will contain overlapping structures and are therefore unlikely to fulfil this

requirement. This often leads the eigengap method to produce misleading results. An

example of this is shown in Figure 2.14, where analysis of the eigenvalues of the cosine

similarity matrix for the bbc corpus suggests that k = 2 is suitable in place of the correct

value k = 5, despite the fact that the classes are reasonably well separated. In general,

traditional model selection approaches, such as those described in the next chapter, tend

to be more useful when working with text data.

The issue of the performance of spectral methods when applied to non-block-diagonal

matrices is particularly important in document clustering, where the data will frequently

contain overlapping groups. It is worth noting that the generation of soft clusterings

based on spectral methods has not been considered in the literature. Since soft member-

ship weights for documents and terms can be useful in providing an insight into a newly

produced clustering solution, we consider this problem in more detail in Section 6.2.

44



(a) Leading eigenvalues (b) Corresponding eigengaps

Figure 2.14: Example application of the eigengap method to estimate the optimal number
of clusters in the bbc corpus, based on the examination of the differences between the
leading eigenvalues.

2.7 Non-negative Matrix Factorisation

A disadvantage of spectral clustering methods stems from the presence of negative entries

in the eigenvectors or singular vectors used to construct the reduced embedding. As

a result, the features of a reduced representation do not have any immediate physical

meaning. Therefore, the application of a post-processing technique is generally required

to produce a final partition of the data. As noted in Section 2.5, this is an issue that is

inherent in many feature extraction techniques. To address this problem, Lee & Seung

(1999) proposed an alternative unsupervised approach for reducing the dimensionality of

non-negative matrices, referred to as Non-negative Matrix Factorisation (NMF). Unlike

spectral methods, NMF seeks to decompose the data into factors that are constrained

so that they will not contain negative values. By modelling each object as the additive

combination of a set of non-negative basis vectors, a readily interpretable clustering of the

data can be produced without the requirement for further post-processing. In contrast to

techniques that construct a reduced space from eigenvectors, these basis vectors are not

required to be orthogonal, which facilitates the discovery of overlapping groups.

NMF also has a natural tendency to produce sparse basis vectors, leading it to perform

well on data where structures exist in different low-dimensional subspaces of the original

high-dimensional space. In such cases, global dimension reduction techniques such as

spectral clustering or PCA may fail to identify these local patterns. In this respect NMF

resembles subspace clustering techniques (Agrawal et al., 1998), which aim to find clusters

45



in various subspaces of the original feature space by performing the tasks of dimensionality

reduction and data clustering simultaneously.

Formally, given a rectangular non-negative matrix A ∈ IRm×n such that each column

represents a data object, NMF generates a reduced rank-k approximation in the form of

the product of two non-negative factors:

A ≈WH such that W ≥ 0 , H ≥ 0

where the rows of W ∈ IRm×k represent a set of k basis vectors and the columns of

H ∈ IRk×n are linear combinations of the basis vectors. Typically the number of basis

vectors is a user-defined parameter, which is chosen so that k << min(m,n).

While NMF has been primarily applied in bioinformatics (e.g. Brunet et al., 2004)

and image processing (e.g. Li et al., 2001), it may also be used to decompose the term-

document representation A of a corpus. In this context, the factor W can be viewed as

a set of semantic variables corresponding to the topics in the data, while H describes the

contribution of the documents to each topic. This idea of representing each document as

the additive combination of several overlapping topics is highly intuitive. Furthermore,

the non-negativity of the factors allows them to be directly interpreted as a soft k-way

co-clustering of both documents and terms. To illustrate this, we consider the application

of NMF to the 2-class subset of the bbc corpus described in Section 2.5.3. Table 2.2

shows the highest weighted terms in the NMF basis vectors forming the rows of W, which

immediately provide us with labels for the two clusters.

(a) Basis vector w1

Rank Term Weight
1 year 0.15
2 company 0.15
3 firm 0.14
4 market 0.13
5 share 0.11
6 growth 0.11
7 bank 0.11
8 government 0.10
9 sale 0.10
10 economy 0.10

(b) Basis vector w2

Rank Term Weight
1 play 0.16
2 game 0.16
3 win 0.15
4 player 0.13
5 first 0.11
6 match 0.10
7 goal 0.10
8 England 0.10
9 team 0.10
10 club 0.10

Table 2.2: Top ranked terms in the basis vectors produced by applying NMF factorisation
to the ‘business’ and ‘sport’ classes from the bbc corpus.

46



2.7.1 Basic Algorithm

The choice of factors in NMF is determined by some objective function that seeks to min-

imise the error of the reconstruction of A by the product WH. In the original formulation

proposed by Lee & Seung (1999), this involves minimising squared Euclidean distance as

computed by the Frobenius norm:

f(W,H) =
1
2
||A−WH||2F (2.26)

An approximate solution may be found by employing a diagonally re-scaled gradient de-

scent search strategy. In practice, this involves alternating between a pair of multiplicative

update rules, as shown in Figure 2.15. At each iteration, W and H are updated by multi-

plying the current factors by a measure of the quality of the current approximation WH.

The authors showed that the error of this approximation decreases monotonically as these

rules are applied until the search procedure converges to a local minimum.

An information theoretic formulation of NMF was also proposed by Lee & Seung

(1999), based on the use of generalised Kullback-Leibler (KL) divergence, also referred to

as relative entropy. The clustering objective then becomes the minimisation of the loss of

information between A and the approximation WH as quantified by the expression:

D(A||WH) =
m∑

i=1

n∑
j=1

(
Aij log

Aij∑k
l=1 WilHlj

−Aij + [WH]ij

)
(2.27)

This function may also be optimised by applying a gradient descent search in the form of

a corresponding pair of multiplicative update rules.

1. Randomly initialise W and H with positive values.

2. Update factor H for 1 ≤ j ≤ n, 1 ≤ c ≤ k:

Hcj ← Hcj
(W

T
A)cj

(WTWH)cj

3. Update factor W for 1 ≤ i ≤ m, 1 ≤ c ≤ k:

Wic ←Wic
(AH

T
)ic

(WHHT)ic

4. Repeat from Step 2 until convergence or maximum number of iterations have elapsed.

Figure 2.15: Euclidean-based NMF algorithm, using multiplicative update rules.

47



2.7.2 Variations

Recently, a number of techniques have been proposed that involve imposing additional

constraints on the matrices U and V to enforce a certain degree of sparsity. While the

standard NMF formulations described previously do tend to generate reasonably sparse

factors, it may be desirable in some situations to increase the level of sparsity in the

basis vectors to produce a more localised solution. Several algorithms have been proposed

that implement sparsity constraints by including additional penalty terms in the objective

function, including Local Non-negative Matrix Factorisation (LNMF) (Li et al., 2001) and

Sparse Non-negative Matrix Factorisation (SNMF) (Liu et al., 2003b).

NMF techniques may also be applied to produce a rank-k non-negative approximation

of a symmetric matrix. Given a positive semi-definite similarity matrix S, Ding & He

(2005) showed that a solution to the problem of minimising the SSE error (2.7) may be

found by performing a symmetric factorisation of S based on the objective function:

f(V) =
∣∣∣∣∣∣S−VV

T
∣∣∣∣∣∣2

F
(2.28)

The optimal factor V ∈ IRn×k can be approximated using a single update rule

Vcj ← Vcj

(
1− β + β

(SV)cj

(VVTV)cj

)
where 0 < β ≤ 1 is a user-defined parameter which controls the rate of convergence.

2.7.3 Limitations

Several authors have observed the sensitivity of NMF to the choice of initial factors.

The standard approach in the literature has been to initialise the factors U and V with

randomly generated values. However, this can lead to inconsistent results over multiple

trials in the same way as stochastically initialised k-means. We discuss this issue further

in Section 6.2.

Another drawback of NMF stems from the fact that the standard multiplicative update

techniques are often very slow to converge. This is particularly significant as every iter-

ation will typically require several costly matrix multiplication operations. For instance,

the update rules for the algorithm given in Figure 2.15 involve six multiplications, each

requiring time O(n3). Even when sparse matrix multiplication techniques are applied to

make the process more efficient, the running time can still be prohibitive for large datasets.

48



2.8 Kernel Clustering Methods

Kernel methods involve the transformation of a dataset to a new, possibly high-dimensional

space where non-linear relationships between objects may be more easily identified. Rather

than explicitly computing the transformed representation φ(x) of each data object x, the

application of the “kernel trick” (Aizerman et al., 1964) allows us to consider the affinity

between a pair of objects (xi,xj) using a kernel function κ, which is defined in terms of

the dot product:

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (2.29)

In practice, the function κ is represented by an n × n symmetric, positive semi-definite

kernel matrix (or Gram matrix) K, such that Kij = κ(xi, xj). By re-formulating algo-

rithms using only dot products and subsequently replacing these with affinity values from

K, we can efficiently apply learning algorithms in the new kernel space.

Another significant advantage of kernel methods is their modularity, where every

method is composed of two decoupled components: a generic learning algorithm, and

a problem-specific kernel function. Consequently, it is possible to develop algorithms that

can readily be deployed in a wide range of domains without requiring any customisation.

Novel kernels can also be constructed in a modular fashion by chaining together multiple

existing functions together.

The main focus of research in this area has been on the development of techniques

for supervised tasks, notably the well-known support vector machine (SVM) classifier

(Cristianini & Shawe-Taylor, 2000). However, kernel methods have also been shown to be

effective in unsupervised problems, such as document clustering (Dhillon et al., 2004b).

We now describe several algorithms and kernel functions that are relevant in this context.

2.8.1 Algorithms

Kernel k-means

A variety of popular clustering techniques have been re-formulated for use in a kernel-

induced space, including the standard k-means algorithm. To describe the algorithm,

we firstly observe that, using the notation given above, the squared Euclidean distance

between a pair of objects in the kernel space represented by a matrix K can be expressed

as:

||φ(xi)− φ(xj)||2 = Kii + Kjj − 2Kij (2.30)

49



This may be used as a starting point for the identification of cluster structures. For-

mally, given a set of objects {x1, . . . , xn}, the kernel k-means algorithm (Schölkopf et al.,

1998) seeks to minimise the distortion between the objects and the “pseudo-centroids”

{µ1, . . . , µk} in the new space:

k∑
c=1

∑
xi∈Cc

||φ(xi)− µc||2 where µc =

∑
xi∈Cc

φ(xi)
|Cc|

(2.31)

Note that this expression is analogous to the SSE objective (2.7) used in standard k-

means. However, rather than explicitly constructing centroid vectors in the kernel space,

distances are computed using dot products only. From Eqn. 2.30, we can formulate squared

object-centroid distance by the expression:

||φ(xi)− µc||2 = Kii +

∑
xj ,xl∈Cc

Kjl

|Cc|2
−

2
∑

xj∈Cc
Kij

|Cc|
(2.32)

The first term above may be excluded as it remains constant; the second is a common

term representing the self-similarity of the centroid µc, which only needs to be calculated

once for each cluster; the third term represents the affinity between xi and the centroid of

the cluster Cc.

This kernelised algorithm has a significant advantage over standard k-means in the

sense that, given an appropriate kernel function, it can be used to identify structures that

are not necessarily spherical or convex. In addition, once we have constructed a single

matrix K, multiple partitions may be subsequently generated without referring back to

the original feature space.

1. Select k arbitrary initial clusters {C1, . . . , Ck}.

2. For each object xi ∈ X and centroid µc, compute the distance:

d(xi, µc) = Kii +

∑
xj ,xl∈Cc

Kjl

|Cc|2
−

2
∑

xj∈Cc
Kij

|Cc|

3. Assign each xi to cluster corresponding to nearest centroid.

4. Repeat from Step 2 until termination criterion is satisfied.

Figure 2.16: Kernel k-means (KKM) algorithm.

50



Weighted kernel k-means

In the standard k-means algorithm and its kernel equivalent, each data object in a cluster

makes an equal contribution towards the location the cluster centroid. An extension of

the kernel k-means algorithm was proposed by Dhillon et al. (2004b), where each object xi

has an associated non-negative weight wi indicating its relative importance. The objective

function given in Eqn. 2.31 then becomes:

k∑
c=1

∑
xi∈Cc

wi ||φ(xi)− µc||2 where µc =

∑
xi∈Cc

wiφ(xi)∑
xi∈Cc

wi
(2.33)

Since the weight for each object must be taken into consideration when computing object-

centroid distances, the expression Eqn. 2.32 must be altered as follows:

||φ(xi)− µc||2 = Kii +

∑
xj ,xl∈Cc

wjwlKjl

(
∑

xi∈Cc
wi)2

−
2
∑

xj∈Cc
wjKij∑

xi∈Cc
wi

(2.34)

Note that the original kernel k-means algorithm can be viewed as a specific case of the

weighted variant, where wi = 1 ∀i.

Dhillon et al. (2004b) showed that many of the graph partitioning criteria given in

Section 2.6.1 can be shown to be equivalent to the weighted objective function (2.33)

when using a particular kernel matrix and set of weights. For instance, an approximation

for the normalised cut criterion may be found by applying the algorithm to the matrix

K = D−1SD−1 (2.35)

where D is the degree matrix of K and object weights are chosen so that wi = Dii.

2.8.2 Kernel Functions

The selection of a suitable kernel function for a particular learning problem is crucial to

the success of kernel methods. In general, any positive semi-definite matrix can be viewed

as a kernel matrix (Cristianini & Shawe-Taylor, 2000). We discuss here several popular

kernel functions that may be applied to text data.

Normalised linear kernel: As noted previously, the most common choice of similarity

measure for text data is cosine similarity (2.4). A corresponding kernel function is

formed by computing dot products and normalising by self-similarity (Schölkopf &

Smola, 2001). Formally, the affinity between two documents xi and xj is defined as:

κ(xi, xj) =
〈xi, xj〉√

〈xi, xi〉 〈xj , xj〉
(2.36)

51



This function yields values in the range [0, 1] and self-similarity values κ(xi, xi) = 1.

Gaussian kernel: The Gaussian Radial Basis Function (RBF) kernel is widely used in

a variety of domains and applications, notable image processing. Formally, the

function is defined by

κ(xi, xj) = exp

(
−||xi − xj ||2

σ2

)
(2.37)

where σ ∈ IR+ is a user-defined smoothing parameter, often referred to as the kernel

width. The choice of a suitable value for σ can greatly influence the structures

that are generated by a kernel clustering algorithm and its selection represents a

non-trivial parameter selection problem (Lee & Daniels, 2005).

Polynomial kernel: Given an existing kernel expressed in terms of dot products, a new

kernel can be created by applying the polynomial function

κ(xi, xj) = 〈xi, xi〉p (2.38)

for some positive integer degree p. As with the Gaussian kernel, the selection of a

value for the exponent can have a significant impact upon the success of the learning

algorithm.

String kernels: It is worth noting that kernel functions which operate on the traditional

feature vector representation of documents will also be subject to certain drawbacks

of the vector space model, notably the loss of context information regarding the

relative placement of terms in documents. To preserve this information, Lodhi et al.

(2002) proposed the use of string kernels, which involve computing similarities be-

tween documents by finding matching non-consecutive sub-sequences of characters.

Rather than making use of individual characters, Cancedda et al. (2003) proposed a

kernel based on word sequences which proved successful in text classification prob-

lems. However, in contrast to a simple linear kernel, the construction of string kernels

is often complex and computationally expensive.

2.9 Ensemble Clustering Methods

Ensemble techniques have been successfully applied in supervised learning to improve the

accuracy of classification algorithms, where the rationale is that the combined judgement

52



Clustering 
Algorithm

Integration 
Function

Original 
Dataset

Consensus 
Clustering

Base 
Clusterings

Figure 2.17: Generic ensemble clustering workflow, illustrating the generation and inte-
gration phases of the ensemble process.

of a group of predictors is frequently superior to that of an individual (Breiman, 1996).

In contrast, cluster analysis methods have often involved the repeated execution of a

clustering procedure, followed by the manual selection of a single solution that optimises an

internal validation criterion. However, rather than merely selecting a “winning” partition,

recent work has shown that combining the strengths of an ensemble of clusterings can

often yield better results (e.g. Fred, 2001; Strehl & Ghosh, 2002b).

Given a collection of “base” clusterings generated on data originating from the same

source, the primary aim of ensemble clustering is to aggregate the information provided

the members of the collection to produce a more accurate solution. Additionally, ensem-

ble methods can often afford greater stability, which refers to the ability of a clustering

procedure to consistently produce similar solutions across multiple trials. Even though

the underlying clustering algorithm, such as k-means with random initialisation, may gen-

erate inconsistent solutions of varying accuracy, by combining these solutions it may be

possible to produce a single definitive output. Another potential benefit of these methods,

which has received little attention, is in the reuse of knowledge from previously generated

clusterings (Strehl & Ghosh, 2002b). Rather than constructing a new partition of the

domain data from scratch, it may be preferable to aggregate legacy solutions or use them

as a source of background information when producing a new clustering.

A range of approaches to ensemble clustering have been proposed in the literature,

which have been referred to by different authors as “cluster combination”, “meta-clustering”,

“evidence accumulation” and “cluster fusion”. However, these methods generally follow a

common workflow as illustrated in Figure 2.17, which consists of two distinct phases:

1. Generation: Construct a collection of τ base clustering solutions, denoted C =

{C1, . . . , Cτ}, which represent the members of the ensemble. This is typically done

53



by repeatedly applying a chosen clustering algorithm in a manner that leads to

diversity among the members.

2. Integration: Once a collection of ensemble members has been generated, a suit-

able integration function is applied to combine them to produce a final consensus

clustering C̄:

f : {C1, . . . , Cτ} → C̄

In practice, this often involves the application of an additional clustering procedure

to an intermediate representation of C.

2.9.1 Generation Techniques

It has frequently been demonstrated that supervised ensembles are most successful when

constructed from a set of accurate classifiers whose errors lie in different parts of the data

space (e.g. Opitz & Shavlik, 1996). Similarly, unsupervised ensemble procedures typically

seek to encourage diversity with a view to improving the quality of the information avail-

able in the integration phase. For instance, Topchy et al. (2005) suggested that, given

a collection of poor quality partitions of a dataset, a useful consensus clustering may be

produced if the collection is sufficiently diverse. In these cases, the lack of accuracy in the

ensemble members is compensated for by their diversity. However, in general, empirical

results suggest that it is preferable to make use of reasonably accurate clusterings that

adequately cover the space of possible solutions (Fern & Brodley, 2003).

A simple approach is to rely on the inherent instability of common clustering algorithms

such as standard k-means. By employing a stochastic initialisation scheme, the algorithm

may often converge to different local solutions (Jain & Fred, 2002b). However, for many

datasets this may not result in a sufficient level of diversity. Additionally, the effect of

outlying objects may not be negated. Consequently, a variety of strategies have been used

in the clustering literature to artificially introduce instabilities in clustering algorithms.

We now summarise several noteworthy ensemble generation approaches:

Data sampling: The most commonly employed strategy has been to use unbiased ran-

dom sampling to produce partitions on different parts of the same dataset. Many

authors (e.g. Leisch, 1999; Dudoit & Fridlyand, 2003) have suggested the use of boot-

strapping aggregation or “bagging”, where subsets of the original data are produced

by independently drawing with replacement. A related technique involves applying

54



subsampling without replacement, where typically 60-80% of the data objects are

included when generating each base clustering (Minaei-Bidgoli et al., 2004; Fern &

Brodley, 2004). Having chosen a sample of data, an ensemble member is generated

by applying a suitable base clustering algorithm, such as standard k-means with

random initialisation.

Feature selection: Another technique that has frequently been applied in supervised

learning to introduce diversity is to use different feature subsets, so that individual

ensemble members have only a partial view of each data object. A simple approach

is to employ random subspacing (Ho, 1998), where each member is generated on a

randomly selected subset of the original dimensions. This technique was applied to

produce ensemble clusterings of medical and synthetic data by Greene et al. (2004).

Feature extraction: Fern & Brodley (2003) proposed the generation of a diverse set of

base clusterings by randomly projecting data onto a lower dimensional subspace.

Each ensemble member is generated by transforming the n×d data set to a reduced

set of d′ new dimensions. This transformation is defined by a d×d′ matrix R, which is

populated by randomly selecting values in the range [0, 1] and normalising the entries

in each column to sum to 1. After performing the mapping, the authors applied

the EM clustering algorithm to the new data. Other feature extraction techniques

could potentially be used in this context (e.g. spectral embedding). However, the

computational cost and global nature of many of these methods makes them less

attractive.

Random parameter selection: As noted in Section 2.3, the output of partitional algo-

rithms such as k-means is dependent on the initial choice of the number of clusters

k. This has been exploited as a source of ensemble diversity by generating cluster-

ings using randomly selected values of k from a user-specified interval (Jain & Fred,

2002b). Ghosh et al. (2002) observed that better results can sometimes be achieved

by combining a collection of clusterings generated at a much higher resolution than

the value of k used in the final clustering.

Heterogeneous ensembles: Typically in ensemble clustering, members are generated

over multiple runs of the same clustering algorithm. As an alternative, heteroge-

neous ensembles may be employed, where diversity is induced by allowing each base

55



clustering to potentially be generated using a different algorithm (Greene et al.,

2004). The motivation here is that these algorithms may differ in their strengths

and weaknesses, so that an ensemble can combine the best aspects of each approach.

2.9.2 Integration Techniques

Once a collection of diverse ensemble members has been generated, a strategy is required

to combine these clusterings to produce a single solution. In supervised learning, it has

been observed that the success of an ensemble technique depends not only on the presence

of a diverse set of base classifiers, but also on the ability of the aggregating classifier to

exploit the resulting diversity (Brodley & Lane, 1996). Similarly, the choice of a suitable

strategy for integrating an ensemble of clusterings will greatly affect the accuracy of the

final clustering solution (Greene et al., 2004). We now summarise three distinct integration

techniques that have been frequently used in the ensemble clustering literature.

Analysis of pairwise co-assignments

The most popular integration strategy has been to use information derived from different

clusterings to determine the level of association between each pair of objects in a dataset.

The fundamental assumption underlying this strategy is that pairs of objects belonging

to the same natural class will frequently be co-assigned during repeated executions of a

clustering algorithm. This approach was initially proposed by Fred (2001), who referred

to it as “evidence accumulation”. Its use was motivated by majority voting schemes

commonly employed in classifier ensembles, since each pair of co-assigned objects may be

viewed as a vote for the pair being assigned to the same cluster in the final partition. Strehl

& Ghosh (2002b) independently proposed an equivalent strategy, which they refer to as

“cluster-based similarity partitioning”. This strategy was motivated by the observation

that pairwise co-assignments, averaged over a sufficiently large number of clusterings, may

be used to induce a new measure of similarity on the data.

In practice, integration techniques based on co-association involve the construction of a

symmetric n×n matrix M, such that Mij indicates the fraction of clusterings in C in which

both xi and xj were assigned to the same cluster. As suggested by Monti et al. (2003), when

using resampling-based ensemble generation, the normalisation of M should only take

into account the total number of clusterings in which pairs of objects were both present.

Once this intermediate representation has been constructed, a standard similarity-based

56



clustering algorithm may be applied to M to produce a consensus solution. Algorithms

that have been employed for this purpose include single linkage agglomerative clustering

(Jain & Fred, 2002a) and multi-level graph partitioning (Strehl & Ghosh, 2002b).

Integration based on cluster graphs

Rather than examining the pairwise associations between objects, several authors have

suggested examining the relations between the clusters contained in all partitions in C.

Strehl & Ghosh (2002b) proposed a technique that involves modelling the set of parti-

tions C as a weighted hypergraph, where each vertex represents a cluster from one of the

partitions and the edge weight between a pair of vertices is computed based upon the

similarity between the corresponding pair of clusters. This similarity may be computed

using standard techniques for comparing disjoint partitions, such as the Jaccard index

(see Section 3.3). A grouping of the clusters is then found using an appropriate k-way

graph partitioning algorithm. Each resulting group of clusters can be regarded as a “meta-

cluster”. A final clustering may be derived by assigning each object to the meta-cluster

containing the largest number of clusters to which the object has been assigned.

Fern & Brodley (2004) proposed formulating the information contained in C as an

unweighted bipartite graph, which preserves both the associations between objects as well

as those between clusters. Formally, this involves the construction of a graph G(V, E) such

that V = VX ∪ VC , where VX represents the n data objects and VC represents the set of

all individual clusters in C. An edge (i, j) exists only if the object xi was assigned to

cluster j. A consensus clustering may be found by applying a bipartite graph partitioning

algorithm such as spectral co-clustering.

Integration by cluster correspondence

The graph-based approach proposed by Strehl & Ghosh (2002b) is based on the assump-

tion that there will be a direct relationship between individual clusters across different

partitions in C. This concept of correspondence, which is sometimes referred to as cluster

voting, has been explicitly used by several authors for combining collections of clusterings.

Since there is no intuitive way of finding the correspondence between all base clusterings

in a single pass, Dimitriadou et al. (2002) proposed a heuristic approach where, for each

newly generated base clustering, the new clusters are mapped to the existing clusters in

the current consensus clustering. This mapping is performed by matching each pair of

57



clusters that have the highest fraction of objects in common. The transformed cluster

assignments may then be viewed as votes indicating associations between the data objects

and the k clusters in the current consensus clustering. By repeatedly performing this pro-

cess, the τ base clusterings may be combined to form a k-way fuzzy clustering of the data.

Dudoit & Fridlyand (2003) described a similar algorithm, referred to as BagClust1, which

involves finding the optimal alignment between the clusters in each newly generated base

partition and those in the existing current clustering. Once all members have been added,

a final clustering is obtained by taking the majority cluster for each data object.

2.9.3 Limitations

A serious drawback of ensemble techniques in general is the computational cost of re-

peatedly processing a dataset. In ensemble clustering, the generation and aggregation of

many solutions can be impractical for large, high-dimensional datasets such as text cor-

pora. While reducing the number of base clusterings appears to be an intuitive solution,

this can result in an unstable solution that is little better than that produced by the

base clustering algorithm. Unfortunately, the feasibility of applying the ensemble cluster-

ing techniques described previously may be greatly limited by the number of objects in

the data. The corresponding storage overhead required for techniques such as bipartite

graph-based integration can also be prohibitive.

It is also the case that ensemble techniques require a series of key design issues to

be addressed. Firstly, how do we generate a collection of base clusterings from which an

ensemble is composed? Secondly, how many base clusterings must be aggregated to pro-

duce a stable, accurate solution? Thirdly, how can we aggregate the ensemble members to

produce the final consensus clustering? This raises a number of parameter selection issues

in addition to those pertaining to the base clustering algorithm. In particular, we have

observed that the choice of a suitable integration method can greatly dictate the success

of ensemble clustering (Greene et al., 2004). Although traditional clustering algorithms

have often been used in the integration phase, the limitations of those algorithms will

often impact upon the accuracy of the resulting consensus clustering. For instance, while

the application of single linkage AHC based on a co-assignment matrix has been the most

popular choice for ensemble clustering in the literature, inaccurate clusterings may still

be generated due to poor merging decisions and the chaining phenomenon described in

Section 2.4.1. To address this problem, Strehl & Ghosh (2002b) suggested the use of a

58



“supra-consensus function” which combines the output of multiple integration methods to

produce a more robust solution. However, such an approach naturally leads to additional

computational expense.

2.10 Summary

In this chapter, we have reviewed a variety of clustering paradigms, ranging from par-

titional and hierarchical methods proposed in the classical clustering literature to state-

of-the-art approaches based on concepts such as spectral analysis and kernel learning.

However, it is apparent that many well-known techniques, which have been widely em-

ployed in document clustering, suffer from non-trivial limitations. This particularly relates

to important issues, such as the production of accurate clusterings in the presence of over-

lapping groups or the ability to scale to large datasets. In the latter chapters of this thesis

we empirically examine these issues and propose novel solutions that are suitable for use

in the context of document clustering.

59



Chapter 3

Cluster Validation Methods for

Text Data

3.1 Introduction

In the previous chapter, we discussed a variety of clustering algorithms suitable for ana-

lysing text corpora. We now consider the task of assessing the validity of the output of a

clustering algorithm, which represents a fundamental problem in unsupervised learning.

Unlike in classification tasks, cluster analysis procedures will generally be unable to refer

to predefined class labels when employed in real-world applications. Consequently, there

is no clear definition of what constitutes a correct clustering for a given dataset. As a

result, it may be difficult to distinguish between a solution consisting of groups that accu-

rately reflect the underlying patterns in the data and one that does not provide the user

with any helpful insight. While it may be possible in some cases for a domain expert to

manually evaluate a clustering solution, this will be unfeasible for larger datasets and may

introduce an element of human bias. For instance, while some authors have suggested

producing a hierarchical clustering of a corpus and identifying the “best” cut-off point on

a dendrogram by inspection, it is likely that different users will suggest different cutting

levels.

In contrast, cluster validation methods automatically produce a quantitative evalua-

tion, which can be highly useful both in the exploratory analysis of data and in the design

of new clustering algorithms. The validation problem can be viewed as comprising of

several different tasks:

60



Examining cluster tendency: In certain applications, a crucial initial step in the clus-

ter analysis process is to determine whether any significant structures exist in a

dataset at all. However, in the document clustering literature it has been common

to assume that text corpora will contain at least two identifiable topics.

Model selection: This task relates to the identification of an appropriate clustering al-

gorithm and a corresponding set of parameter values. In the context of document

clustering, a particularly important model selection problem is that of estimating

the optimal number of clusters in a corpus, denoted by k̂. For certain datasets, there

may be several reasonable values for k̂.

Relative comparison: It is often necessary to directly compare two or more candidate

clusterings of the same dataset. This comparison may be performed as part of model

selection, or may be used to evaluate the performance of a newly proposed clustering

algorithm, relative to that afforded by existing algorithms.

Stability analysis: When a clustering solution is generated using an algorithm that con-

tains a stochastic element or requires the selection of key parameter values, it is

important to consider whether the solution represents a “definitive” solution that

may easily be replicated. This can typically be determined by assessing the level of

pairwise agreement between two or more clusterings of the same data.

A wide variety of validation methods have been proposed in the cluster analysis literature,

which pertain to one or more of the above tasks. In the remainder of this chapter we

review a range of methods, both classical and contemporary, many of which are relevant

for document clustering. These methods are often organised into three distinct categories:

1. Internal validation: Compare clustering solutions based on the goodness of fit be-

tween each clustering and the raw data on which the solutions were generated.

2. External validation: Assess the agreement between the output of a clustering algo-

rithm and a predefined reference partition that is unavailable during the clustering

process.

3. Stability-based validation: Evaluate the suitability of a given clustering model by

examining the consistency of solutions generated by the model over multiple trials.

61



3.2 Internal Validation

Internal validation methods are designed to provide a means of systematically assessing

the quality of a clustering based on some evaluation function, which usually takes the form

of an index measuring the goodness of fit between the clustering and the data on which it

was generated. This evaluation is based solely on aspects of the features and metrics used

during the clustering process, without considering any additional information or external

supervision. In certain cases, these indices can also be used to provide an objective function

for clustering, although many are intractable to optimise directly. Consequently, internal

validation techniques are generally applied after the completion of the clustering procedure.

Model selection in areas such as bioinformatics has frequently been performed by using

internal techniques (Bolshakova & Azuaje, 2002). Specifically, it is common to generate

multiple clusterings of the data for a range of reasonable parameter values. As noted

in Section 1.2.1, for knowledge discovery tasks it may be necessary to repeatedly adjust

parameter values and reapply the clustering algorithm until a useful solution is obtained.

To guide this process, one or more internal validation indices may be employed to assess

the quality of different solutions. A set of suitable parameter values may be identified by

locating a solution which optimises these indices.

It is common for internal validation indices to measure goodness-of-fit by examining

aspects of a clustering solution such as intra-cluster compactness and inter-cluster sepa-

ration. To illustrate this idea, we consider the simple two-dimensional data depicted in

Figure 3.1, for which we wish to choose a suitable value for the number of clusters k. An

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

90

100

110

Student Version of MATLAB

(a) Well-separated clusters (k = 3)

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

90

100

110

Student Version of MATLAB

(b) Poorly-separated clusters (k = 4)

Figure 3.1: Two possible clusterings of a simple synthetic dataset containing three well-
separated groups, which illustrates the importance of inter-cluster separation.

62



internal index is likely to favour the first clustering in Figure 3.1(a), which consists of three

clusters that are relatively compact and well-separated. However, the partition shown in

Figure 3.1(b) is clearly a poor fit for the data, as two of the clusters are not well-separated.

Therefore, evaluating the second partition with the same index should result in a relatively

poor score. From this, we can conclude that k = 3 is likely to represent a more suitable

choice for the data.

3.2.1 Classical Internal Validation Techniques

We now discuss a number of internal indices that have been traditionally used to evaluate

hard clusterings. Note that, while many of these indices were originally designed to make

use of Euclidean distances, it may be more appropriate to use cosine distance (2.5) when

working with text data. For the remainder of this section, we assume the use of an

arbitrary distance metric d(x, y), unless otherwise stated.

Calinski-Harabasz index

Motivated by the clustering objectives used in well-known partitional algorithms, a number

of internal indices have been proposed which assess cluster quality by considering the

squared distances between data objects and cluster representatives. Formally, the within-

cluster sum of squares is the total of the squared distances between each object xi and

the centroid of the cluster Cc to which it has been assigned:

W (C) =
k∑

c=1

∑
xi∈Cc

d(xi, µc)2

When employing Euclidean distance, this is equivalent to the SSE function (2.7) used in

the standard k-means algorithm. The between-cluster sum of squares is the total of the

squares of the distances between the each cluster centroid and the centroid of the entire

dataset, denoted µ̂:

B(C) =
k∑

c=1

|Cc| d(µc, µ̂)2 where µ̂ =
1
n

n∑
i=1

xi

The statistics W (C) and B(C) have been combined in a number ways by different authors

for the purposes of validation. A representative example, the Calinski-Harabasz (CH)

index (Calinski & Harabasz, 1974), involves computing the normalised ratio of within-

63



cluster relative to inter-cluster scatter:

CH(C) =
B(C)/(k − 1)
W (C)/(n− k)

(3.1)

A larger value is indicative of greater internal cohesion and a large degree of separation

between the clusters in C. This index has been frequently used as a means of automatically

selecting the number of cluster in data, particularly in conjunction with agglomerative

hierarchical clustering methods. It has also recently been applied to the task of model

selection in document clustering (Surdeanu et al., 2005).

Generalised Dunn’s index

Many popular cluster validation indices are based on the assumption that a correct cluster-

ing will minimise intra-cluster dissimilarity, while simultaneously maximising inter-cluster

dissimilarity. A prototypical index is that proposed by Dunn (1974b), which was designed

to reward “compact and well separated clusters”. This index was generalised by Bezdek &

Pal (1995) to support the use of arbitrary cluster evaluation criteria. Formally, for a dis-

joint k-way clustering, we let ∆ : C → IR denote a function that evaluates the intra-cluster

dissimilarity or diameter of a cluster in C, and let δ : C × C → IR denote a function that

evaluates the inter-cluster dissimilarity between a pair of clusters. An overall evaluation

for C is calculated using the expression:

D(C) = min
1≤i≤k

{
min

1≤j≤k,i6=j

{
δ(Ci, Cj)

max1≤l≤k {∆(Cl)}

}}
(3.2)

A larger value for D(C) indicates that the clustering C consists of compact clusters which

are well-separated.

To evaluate clusters, the original formulation of Dunn’s index made use of complete

intra-cluster diameter and single-linkage inter-cluster distance, as defined by:

∆1(Ci) = max
x∈Ci,y∈Ci

{d(x, y)} δ1(Ci, Cj) = min
x∈Ci,y∈Cj

{d(x, y)} (3.3)

Since both functions only make use of a single distance value corresponding to the most

extreme case, this formulation is highly sensitive to the presence of outliers. An alternative

approach is to include the contribution of all objects in a cluster by considering object-

centroid scatter and measuring inter-cluster dissimilarity in terms of the distance between

centroids:

∆2(Ci) = 2
(∑

x∈Ci
d(x, µi)
|Ci|

)
δ2(Ci, Cj) = d(µi, µj) (3.4)

64



Bezdek & Pal (1995) suggested that, by considering average object-centroid distance to-

gether with average-linkage inter-cluster distance, more robust cluster evaluations can be

produced:

∆3(Ci) = 2
(∑

x∈Ci
d(x, µi)
|Ci|

)
δ3(Ci, Cj) =

∑
x∈Ci,y∈Cj

d(x, y)

|Ci| |Cj |
(3.5)

It should be noted that evaluation criteria based on object-centroid distances will often

exhibit an unfair bias toward spherical clusters in the same way as the standard k-means

algorithm, leading to the production of misleading results on data where the underlying

groups are elongated or non-convex in structure.

Davies-Bouldin index

Davies & Bouldin (1979) proposed a related internal validation technique that considers

the ratio of intra-cluster scatter to inter-cluster separability across all k groups in a clus-

tering. Formally, the DB index is defined as a function of the proximity between each

cluster and its nearest neighbour:

DB(C) =
1
k

k∑
i=1

max
i6=j

{
∆(Ci) + ∆(Cj)

δ(Ci, Cj)

}
(3.6)

This value will decrease as clusters become more compact and more distinctly separated,

making smaller values for this index desirable. As with Dunn’s index, arbitrary cluster

evaluation functions can potentially be used in Eqn. 3.6. However, typically the centroid-

based metrics defined in Eqn. 3.4 are employed to assess scatter and inter-cluster dis-

similarity. A significant disadvantage of the DB index is that it does not have a fixed

range, with an output value only constrained to be non-negative, making interpretation

problematic. In addition, empirical analysis has shown that, when attempting to select k,

this index tends to underestimate the number of groups, particularly for weakly clustered

data (Dubes, 1987).

C-index

Hubert & Levin (1976) proposed a cluster validation measure that evaluates the homo-

geneity of a set of clusters by comparing the weight of the intra-cluster distances induced

to a similar proportion of inter-cluster distances. Formally, let dw denote the sum of all lw

intra-cluster distances induced by a clustering C. Furthermore, let dmin denote the sum of

65



the lw smallest and dmax denote the sum of the lw largest distances across all pairs of ob-

jects in the dataset. Having examined all pairwise distances, the C-index for a clustering

is calculated as the ratio:

HL(C) =
dw − dmin

dmax − dmin
(3.7)

A small value for this ratio is generally indicative of a more cohesive clustering. While

the C-index has not been frequently employed in unstructured text clustering problems,

Dalamagas et al. (2004) did evaluate its application in determining a suitable cut-off point

for hierarchical clustering of XML documents.

Silhouette index

Rousseeuw (1987) suggested computing a “silhouette value” for each object in a clustering,

which measures the degree to which the object belongs to its current cluster relative to

the other k − 1 clusters. Formally, for each xi ∈ Ca, let a(i) denote the average distance

between the object and all other objects in Ca, and let b(i) denote the average distance

between xi and all objects in the nearest competing cluster Cb:

a(i) =
1
|Ca|

∑
j∈Ca,i6=j

d(i, j) b(i) =
1
|Cb|

∑
j∈Cb

d(i, j)

The silhouette width for xi is then computed using the expression:

sil(i) =
b(i)− a(i)

max {a(i), b(i)}
(3.8)

This produces an evaluation in the range [−1, 1], indicating how well the object fits in

its own cluster when compared to how well it would fit if moved to another cluster.

A value close to 1 indicates that xi is likely to have been assigned to the appropriate

cluster, a silhouette closer to 0 suggests that xi could also have been assigned to the

nearest alternative cluster, while a negative value suggests that xi is likely to have been

incorrectly assigned. The latter case can also be interpreted to mean that the object is an

outlier. An overall evaluation for a k-way clustering, the average silhouette width, can be

computed by taking the mean silhouette of all n participating objects:

ASW (C) =
1
n

n∑
i=1

sil(i) (3.9)

While the use of the silhouette index in identifying a suitable cut-off point for hierar-

chical document clustering was considered by Yao & Choi (2005), it has not been widely

66



employed to validate clusterings of text corpora. When working with this type of data,

an alternative formulation, based on cosine similarity values, may be more appropriate.

In this case, ca(i) denotes the average similarity between a document xi ∈ Ca and the

other documents in that cluster, and cb(i) denotes the average similarity between xi and

the documents in the next nearest cluster Cb:

ca(i) =
1
|Ca|

∑
j∈Ca,i6=j

cos(i, j) cb(i) =
1
|Cb|

∑
j∈Cb

cos(i, j)

A silhouette width for the document xi is now calculated using the expression:

csil(i) =
2(ca(i)− cb(i))
ca(i) + cb(i)

− 1 (3.10)

To produce an overall evaluation for a clustering, we take the average across all n docu-

ments in a manner analogous to Eqn. 3.9:

CASW (C) =
1
n

n∑
i=1

csil(i) (3.11)

Once again, a higher values signifies a superior clustering of the data.

3.2.2 Recent Internal Validation Techniques

While the tasks of cluster evaluation and model selection remain largely unsolved problems

in document clustering, there has been relatively little progress in this area over recent

years. Therefore, we now describe several general-purpose internal validation indices that

have been proposed in recent literature. While not all of these techniques are applicable

to text data, they are nonetheless interesting for the broader task of cluster validation.

Hybrid clustering criterion

Zhao & Karypis (2001) suggested a criterion specifically for use in the context of document

clustering, which rewards partitions that represent a good trade-off between the standard

goals of maximising intra-cluster cohesion while minimising inter-cluster associations. The

authors suggest that the former can be achieved by maximising the sum of the average

pairwise cosine similarities induced by a clustering C, as quantified by:

I(C) =
1
n

k∑
c=1

(∑
xi,xj∈Cc

cos(xi, xj)

|Cc|

)

67



The second goal can be attained by ensuring that a clustering clearly separates the docu-

ments in a cluster from the rest of the collection, specifically by producing a low value for

the quantity:

E(C) =
1∑k

c=1 |Cc| · (n− |Cc|)

k∑
c=1

 ∑
xi∈Cc,xj /∈Cc

cos(xi, xj)


A complete evaluation for a clustering C is produced considering both objectives simulta-

neously, using the ratio:

H(C) =
I(C)
E(C)

(3.12)

It is clear that a good clustering should produce a high value for this index, indicating

strong associations between documents assigned to the same cluster and low associations

between documents assigned to different clusters. While this criterion may be useful for

comparing clusterings with equal numbers of clusters, it exhibits a strong bias toward

larger values of k, making it unsuitable for estimating the number of topics in a document

collection.

Geometric indices

Frederix & Pauwels (2004) proposed a number of non-parametric validation techniques

which do not exhibit the strong bias toward spherical clusters that is present in a number of

traditional indices. In contrast, the proposed indices are primarily based on the assumption

that a cluster may take the form of an arbitrary geometric shape consisting of a dense

region that is well-separated from the other clusters.

Motivated by the observation that regions forming cluster structures will normally be

locally homogeneous, such that the majority of the set of neighbours of each object are

likely to belong to the same cluster as that object, the authors propose an index referred

to as cluster tension. This index examines the diversity of cluster assignments among the

p nearest neighbours of each data object, while also asserting that diversity in high-density

regions is more indicative of an incorrect clustering than diversity in less dense regions.

This assertion is incorporated into the measure by weighting diversity by local density

computed using a suitable density function φ(x). Formally, a global score for a clustering

C is computed by taking the mean local tension over all n data objects

T (C) =
1
n

n∑
i=1

δp(xi)φ(xi) (3.13)

68



where δp(xi) denotes the fraction of the p nearest neighbours of xi which have been assigned

to a different cluster in C. In practice, the expected value for Eqn. 3.13 is calculated

by applying the index to a collection of randomly generated clusterings of the data. An

estimated p-value is then used to assess the significance of the clustering evaluation, where

a small value relative for Eqn. 3.13 relative to the random evaluation scores is indicative

of a good clustering.

While the index described above will assess cluster compactness, Frederix & Pauwels

(2004) proposed a second measure, the connectivity index, that evaluates the degree to

which a clustering C achieves the alternative objective of “connectedness”. Specifically, for

any pair of objects assigned to the same cluster in C, the density of the data along the path

connecting the pair should be consistently high. On the other hand, a poor clustering may

contain clusters with weakly connected sub-regions. This objective has previously been

employed in so-called path-based clustering algorithms (e.g. Fischer & Buhmann, 2003).

In practice, connectivity is evaluated by randomly selecting r pairs (xi, xj), such that

the objects in each pair belong to the same cluster in C. The density of the data at the

midpoint of the path connecting each pair (xi, xj) is then computed. A total evaluation

for the clustering is obtained by calculating the mean density at all r midpoints:

C(C) =
1
r

r∑
i=1

φ(mi) (3.14)

where mi denotes the midpoint for the i-th pair of objects. The authors suggest that

the robustness of this index can be improved by computing the density at multiple points

along each path.

While density-based and path-based cluster analysis procedures have not been gener-

ally applied to text data, the dual objectives of connectedness and local density are still

desirable in the context of document clustering. We examine a novel validation technique

that makes use of the latter concept in Section 7.2.

Bayesian Information Criterion

When using model-based clustering techniques, a popular approach for estimating the

number of clusters has been to apply the Bayesian Information Criterion (BIC) (Schwarz,

1978). This criterion estimates the optimal number of mixture components for a dataset

X containing n objects by computing an evaluation for the current model based on

BIC = L(X )− r

2
log n (3.15)

69



where r denotes the number of parameters in the model and L(X ) refers to its log-

likelihood. The first term indicates how well the model fits the data in each cluster, while

the second term penalises model complexity. Consequently, a larger value for Eqn. 3.15

indicates that the clustering model is more appropriate for the data.

When using the BIC criterion, it is generally assumed that the data consists of a

mixture of Gaussian components, corresponding to k clusters (Pelleg & Moore, 2000). In

this model, the maximum log-likelihood for a cluster Cj of size nj is computed as

L(Cc) = −nj

2
log(2π)− m · nj

2
log(σ̂2)− nj − k

2
+ nj log(nj)− nj log n

where the variance estimate σ̂2 is calculated in terms of Euclidean object-centroid dis-

tances:

σ̂2 =
1

n− k

∑
i

||xi − µj ||2

The overall log-likelihood for a dataset is found by taking the sum over all k clusters:

L(X ) =
k∑

c=1

L(Cc)

The BIC technique has been used by a number of authors when employing model-

based document clustering methods, including spherical EM clustering (Kruengkrai et al.,

2004). However, it has been observed that the criterion exhibits a bias toward larger

values of k when the cluster structures in the data are not perfectly spherical (Hamerly

& Elkan, 2004). Other similar probabilistic model selection techniques include the Akaike

Information Criterion (AIC) (Akaike, 1974) and Minimum Description Length (MDL).

It has been observed that these techniques can often be computationally expensive for

high-dimensional data (Torre & Black, 2003).

Gap statistic

Tibshirani et al. (2000) proposed an alternative approach for estimating the number of

clusters in data, which involves comparing the observed intra-cluster cluster dispersion

with its expectation as the value of k increases. Formally, let Wk denote the total of the

average intra-cluster pairwise squared distances for a clustering containing k groups:

Wk =
k∑

c=1

1
|Cc|

∑
x,y∈Cc

d(x, y)2 (3.16)

The Gap statistic compares the observed value of log (Wk) with its expected value under

an appropriate null reference distribution. In practice, this comparison is performed by

70



firstly generating b reference datasets, typically from a uniform distribution. To evaluate

the clustering model for a specific value of k, a clustering is generated on each reference

set and the average value of log (Wk) over the b runs is computed. The difference between

the actual value for Eqn. 3.16 and its approximated expectation is then examined:

GAP (k) =
1
b

[
b∑

h=1

log Wkb

]
− log Wk (3.17)

A final estimation for k̂ is obtained by selecting the smallest value k such that the quantity

GAP (k)−GAP (k + 1) is above a given threshold value.

An advantage of the gap statistic derives from its ability to produce an evaluation for

the case of k = 1, which is useful when examining the issue of cluster tendency. However,

its reliance on the within-cluster squared distance criterion given in Eqn. 3.16 leads it

to favour compact clusters. In addition, the problem of creating a suitable reference

distribution is non-trivial, particularly for high-dimensional data (Ben-Hur et al., 2002).

We are not aware of any application of this technique that involves text data.

3.3 External Validation

A significant disadvantage of internal techniques is that useful comparisons may only be

made between clusterings that are generated using the same data model and similarity

metric (Ghosh, 2003). We have also seen that many well-known internal indices make

assumptions about the structure of the clusters in data, so that they favour clusters with

certain geometric properties.

An alternative approach to validation is to apply the algorithm to a dataset for which

a reference partition or “ground truth” is available, typically in the form of predefined

class labels. External validation indices make use of this information, unavailable to the

clustering algorithm itself, to quantify the level of agreement between the algorithm’s

output and the set of k′ natural classes C′ = {C ′
1, . . . , C

′
k′} in a reference partition. Since

these indices generally only consider the final partition of the data, they are independent

of the representation and metrics used during the clustering procedure. In this section

we provide a comprehensive review of external validation indices that are suitable for

evaluating disjoint clusterings. When describing these indices, we let n′i denote the number

of objects in class C ′
i, let nj denote the number of objects in cluster Cj , and let nij denote

the number of objects common to both the class C ′
i and cluster Cj

71



3.3.1 Set Matching Measures

A simple external validation approach is to identify a match between each cluster and a

corresponding natural class in the reference partition. Once a mapping has been found,

evaluations can be readily computed based on the k′ × k confusion matrix N, where the

entry Nij denotes the size of the intersection |C ′
i ∩ Cj | between the class C ′

i and cluster Cj .

An example demonstrating the construction of a confusion matrix is shown in Figure 3.2.

It is clear that, by examining the entries in the 3 × 3 matrix, we can find the optimal

permutation π of the groups in C relative to those in C′.

C′ = {{x1,x2},{x3,x4,x5},
{x6,x7,x8}}

{x4,x5,x8}}
C = {{x1,x2,x3},{x6,x7}

Class C1 C2 C3

C ′
1 2 0 0

C ′
2 1 0 2

C ′
3 0 2 1

1

π{C1,C2,C3}
= {C′

1,C′
2,C′

3}

Figure 3.2: Example of a simple matching procedure to align the groups in a correct
classification C′ of eight data objects with those in a clustering C of the same data.

Classification accuracy

Motivated by conventional evaluation techniques in supervised learning, several authors

have suggested assessing the quality of a partition by assigning a unique dominant natural

class to each cluster and counting the number of objects that have been assigned to the

correct cluster (Meila, 2002). To do this, a heuristic correspondence procedure is applied,

which first identifies the largest intersection Nij , resulting in a match between C ′
i and Cj .

The next match is chosen based on the highest value Nij from the remaining pairs, with

the procedure continuing until min(k′, k) matches have been found. Note that no class

may be matched to more than one cluster. The classification accuracy for the clustering

C is then calculated using the expression

H(C′, C) =
1
n

∑
j′=match(j)

Njj′ (3.18)

where match(j) denotes the index of the class selected as a match for the cluster Cj .

72



Purity

Zhao & Karypis (2001) suggested measuring the extent to which each cluster contains

objects from a single dominant natural class. The purity of a cluster Cj is defined as the

fraction of objects in the cluster that belong to the dominant class contained within that

cluster:

P (C ′
i, Cj) =

1
nj

max
i
{Nij} (3.19)

Unlike the classification accuracy measure, purity allows multiple clusters to be matched

to the same dominant class. The overall purity of a clustering is defined as the sum of the

individual cluster purities, weighted by the size of each cluster:

P (C′, C) =
k∑

j=1

nj

n
P (C ′, Cj) (3.20)

This measure provides a näıve estimate of partition quality, where larger purity values are

intended to indicate a better clustering. However, as noted by Strehl & Ghosh (2002a),

the index favours small clusters, with the degenerate case of a singleton cluster resulting

in a maximal cluster purity score.

F-Measure

The F-Measure (Larsen & Aone, 1999) is based on the recall and precision criteria that

are commonly used in information retrieval tasks. Each cluster is viewed as the result of

a query operation, and each natural class is viewed as the target set of documents for the

query. In the ideal case, each cluster will directly correspond to a natural class. Using our

notation, precision and recall for a class C ′
i and cluster Cj are defined respectively as:

p(Cj , C
′
i) =

Nij

nj
r(Cj , C

′
i) =

Nij

n′i

High precision implies that most objects in a given cluster belong to the same class, while

high recall suggests that most objects from a single class were assigned to the same cluster.

The F-measure for a pair (C ′
i, Cj) is given by the harmonic mean of their precision and

recall, calculated as:

Fij =
2 · rij · pij

pij + rij
(3.21)

For each class C ′
i, a unique matching cluster Cj is selected so as to maximise the value

Fij . An overall score for a clustering C is obtained by taking the weighted average of the

73



maximum F-values across all k′ classes:

F (C′, C) =
k′∑

i=1

n′i
n

max
j
{Fij} (3.22)

Ghosh (2003) observed that this index has a tendency to favour clusterings containing a

small number of clusters.

Partition distance

Gusfield (2002) defined the partition distance between two clusterings, denoted D(C′, C),

as the minimum number of objects that must be reassigned in C to produce a solution

identical to C′. A maximum value for this measure is achieved in the trivial case where

one clustering contains a single cluster and the other contains only singleton clusters.

To address this, a normalised distance function producing values in the range [0, 1] was

proposed, which is given by:

ND(C′, C) =
D(C′, C)
(n− 1)

(3.23)

To efficiently identify the optimal correspondence between groups in both classifications,

the authors suggested using the well-known Hungarian method (Kuhn, 1955).

3.3.2 Pairwise Co-assignment Measures

An alternative approach to external validation is to count the pairs of objects for which

the clusters and natural classes agree on their co-assignment. By considering all pairs, we

can calculate statistics for each of four possible cases:

• a = number of pairs in the same class in C′ and assigned to the same cluster in C.

• b = number of pairs in the same class in C′, but in different clusters in C.

• c = number of pairs assigned to the same cluster in C, but in different classes in C′.

• d = number of pairs belonging to different classes in C′ and assigned to different

clusters in C.

Note that a+d corresponds to the number of agreements between C′ and C, b+c corresponds

to the disagreements, and M = a + b + c + d = n(n−1)
2 is the total number of unique pairs.

For instance, in the example shown in Figure 3.2, examining the co-assignments for the

28 unique pairs results in the values a = 3, b = 4, c = 4, d = 17.

74



Jaccard index

The Jaccard coefficient (Jaccard, 1912) has been commonly applied to assess the similarity

between binary sets. It is also possible for this measure to be used in the context of external

validation, where the level of agreement of between the disjoint partitions C′ and C is given

by normalising the number of positive agreements:

J(C′, C) =
a

a + b + c
(3.24)

This index produces a result in the range [0, 1], where a value of 1 indicates that C′ and

C are identical. Dubes (1987) observed that Eqn. 3.24 tends to produce high values for

random clusterings and favours lower values of k.

Rand index

The Rand index (Rand, 1971) is similar to the above measure, but also considers cases

where both partitions assign a pair of objects to different groups. This results in an

evaluation in the range [0, 1] based on the fraction of pairs for which there is an agreement:

R(C′, C) =
a + d

a + b + c + d
(3.25)

To eliminate biases related to different cluster size distributions and the number of clusters,

Hubert & Arabie (1985) proposed the corrected Rand index, which is computed as follows:

CR(C′, C) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(3.26)

After applying this correction, a value of 1 indicates a perfect agreement between the

two groupings, while a value of 0 indicates that a clustering is no better than a random

partitioning of the data.

Fowlkes-Mallows index

A popular index for assessing the similarity between partitions was proposed by Fowlkes &

Mallow (1983), which is based on the calculation of two probability scores: the probability

that a pair of objects are assigned to the same cluster given that they belong to the same

class, and the probability that a pair objects belong to the same class given that they were

assigned to the same cluster. A value for the Fowlkes-Mallows index (FM) is found by

taking the geometric mean of these probabilities:

FM(C′, C) =

√(
a

a + b

)(
a

a + c

)
(3.27)

75



A value close to 1 indicates that the clusters in C provide a good estimate for the reference

partition.

3.3.3 Information Theoretic Measures

Recent research relating to cluster validation has focused on concepts from information

theory, which consider the uncertainty of predicting a set of natural classes based on the

information provided by a clustering of the same data. We now describe two indices, based

on these concepts, which have frequently been applied to evaluate clusterings of text data.

Entropy index

Steinbach et al. (2000) suggested an entropy-based measure for assessing the agreement

between two partitions. By considering the probability Nij

nj
that an object assigned to

cluster Cj belongs to a class C ′
i, we can compute the entropy for the assignments in Cj :

E(Cj) = −
k′∑

i=1

Nij

nj
log

Nij

nj
(3.28)

An overall score for a clustering C is given by the sum of the entropy values for each cluster

weighted by the fraction of objects assigned to that cluster:

E(C′, C) =
k∑

j=1

nj

n
E(Cj) (3.29)

Smaller values for this measure are desirable, with a value of 0 indicating that each cluster

contains instances from a single class. To eliminate the strong bias of Eqn. 3.29 with

respect to k, a variant of this index was proposed by Zhao & Karypis (2001), where the

normalised entropy for a cluster Cj is calculated as:

NE(Cj) = − 1
log k′

k′∑
i=1

Nij

nj
log

Nij

nj
(3.30)

Unlike purity and classification accuracy, entropy considers the distribution of all classes

in a cluster, rather than a single dominant class. However, this index still exhibits a bias

in favour of smaller clusters.

Normalised Mutual Information

Strehl & Ghosh (2002a) observed that external measures such as purity and entropy are

biased with respect to the number of clusters k, since the probability of each cluster

76



solely containing objects from a single natural class increases as k increases. To address

this problem, an alternative index was proposed, based on mutual information, which

quantifies the amount of information shared between the random variables describing a

pair of disjoint partitions.

Formally, let p′(i) and p(j) denote the probabilities that an object belongs to class

C ′
i and cluster Cj respectively. Furthermore, let p(i, j) denote the joint probability that

an object belongs to both C ′
i and Cj . For each data object assigned to a class in C′,

mutual information evaluates the degree to which knowledge of this assignment reduces

the uncertainty regarding the assignment of the object in C. The mean reduction in

uncertainty across all objects can be expressed as:

I(C′, C) =
k′∑

i=1

k∑
j=1

p(i, j) log
p(i, j)

p′(i)p(j)
(3.31)

I(C′, C) takes values between zero and min (E(C′), E(C)), where the upper bound is the

minimum of the entropy values for the two clusterings. To produce values in the range

[0, 1], Strehl & Ghosh (2002a) defined normalised mutual information (NMI), where the

mutual information between the two clusterings is normalised with respect to the geometric

mean of their entropies:

NI(C′, C) =
I(C′, C)√
E(C′)E(C)

(3.32)

In practice, an approximation for this quantity, based on cluster assignments, can be

calculated using:

NMI(C′, C) =

∑k′

i=1

∑k
j=1 nij log

(
n·nij

n′inj

)
√(∑k′

i=1 n′i log n′i
n

)(∑k
j=1 nj log nj

n

) (3.33)

An accurate clustering should maximise this score, where a value of 1 indicates an exact

correspondence between the assignment of objects in C′ and C, while a value of 0 indicates

that knowledge of C provides no information about the true classes C′. Eqn. 3.33 does

have a slight tendency to favour clusterings for larger values of k, although it exhibits no

bias against unbalanced cluster sizes.

77



3.4 Stability-Based Validation

Recently, a number of methods based on the concept of stability analysis have been pro-

posed for the task of model selection. The stability of a clustering algorithm refers to its

ability to consistently produce similar solutions on data originating from the same source

(Lange et al., 2004). Since only a single set of data objects will be generally available

in unsupervised learning tasks, clusterings are generated on perturbations of the original

dataset. A key advantage of stability analysis methods lies in their ability to evaluate a

model independently of any specific clustering algorithm or similarity measure. Thus, they

represent a robust approach for selecting key algorithm parameters (Law & Jain, 2003).

In this section, we focus on stability-based methods that are relevant when estimating

the optimal number of clusters k̂ in a dataset. These methods are motivated by the

observation that, if the number of clusters in a model is too large, repeated clusterings

will lead to arbitrary partitions of the data, resulting in unstable solutions. On the other

hand, if the number of clusters is too small, the clustering algorithm will be constrained to

merge subsets of objects which should remain separated, also leading to unstable solutions.

In contrast, repeated clusterings generated using the optimal number of clusters k̂ will

generally be consistent, even when the data is perturbed or distorted.

3.4.1 Stability Analysis Based on Resampling

The most common approach to stability analysis involves perturbing the data by randomly

sampling the original objects to produce a set of τ non-disjoint subsets. For each potential

value of k in a reasonable range [kmin, kmax], a corresponding set of τ clusterings are

generated on the data subsets. The stability of the clustering model for each candidate

value of k is evaluated using indices operating on pairs of hard clusterings, such as the

external validation indices described in Section 3.3. A higher overall stability score suggests

that k is a better estimate for the optimal value k̂.

A representative example of this approach is the algorithm proposed by Levine &

Domany (2001). For each value of k, an initial partition C0 is generated on the entire

dataset using a partitional clustering algorithm, which represents a “gold standard” for

analysing the stability afforded by using k clusters. Subsequently, τ samples of the data

are constructed by randomly selecting a subset of βn data objects without replacement,

where 0 ≤ β ≤ 1 denotes the sampling ratio controlling the number of objects in each

78



sample. A set of clusterings {C1, . . . , Cτ} is then generated by applying the clustering

algorithm to each sample. For each clustering Ci, the fraction of co-assignments preserved

from C0 is calculated, which is equivalent to the Rand index (3.25). An overall evaluation

for the stability afforded by k is found by averaging the agreement scores across all τ runs.

This process is repeated for each potential k ∈ [kmin, kmax]. A final estimation for k̂ is

chosen by identifying the value k leading to the highest average agreement.

Law & Jain (2003) proposed an alternative stability analysis approach for model se-

lection where the data is perturbed by bootstrapping. This involves generating τ samples

of size n by randomly sampling with replacement. Rather than comparing each clustering

to a single gold standard solution, stability is evaluated by considering the level of agree-

ment between each pair of clusterings. A number of indices were considered for assessing

agreement, including the Jaccard index (3.24) and the Fowlkes-Mallows index (3.27). The

authors note that scores produced by these indices should be corrected for chance to elim-

inate biases toward smaller values of k. After computing the variance of the corrected

agreement scores for each potential value k, the model resulting in the lowest variance is

selected as the best estimate for k̂.

Ben-Hur et al. (2002) described a similar approach based on pairwise stability analysis,

where agglomerative hierarchical clustering is applied to each sample. By using different

cut-off levels from the same hierarchy, the output of a single clustering procedure may be

used in the evaluation of all potential values of k. Giurcaneanu & Tabus (2004) extended

this approach further to encompass the problem of cluster tendency. This is achieved by

setting a threshold θ value for the minimum average pairwise stability that is sufficient

to indicate a consistent clustering model. If no stability evaluation exceeds this threshold

for any candidate k ∈ [kmin, kmax], the data is assumed to have no significant underlying

structure. The choice of θ largely depends on the index used to measure the agreement

between clusterings.

3.4.2 Prediction-Based Validation

In supervised learning problems, model selection is typically performed by identifying a

learning model whose estimated prediction accuracy is highest. A number of authors

have suggested that the concept of prediction accuracy can be adapted to the problem of

evaluating models in clustering tasks. Recent work by Tibshirani et al. (2001) has provided

a theoretical basis for prediction-based validation methods, which assess the stability of a

79



clustering model by measuring the degree to which it allows us to consistently construct

a classifier on a training set that will predict the assignment of objects in a clustering of

a corresponding test set.

Formally, the validation process involves applying two-fold cross-validation to ran-

domly split a dataset X into disjoint training and test sets, denoted by Xa and Xb respec-

tively. Both sets are then clustered to produce partitions Ca and Cb, typically using the

standard k-means clustering algorithm. Subsequently, a prediction Pb for the assignment

of objects in the test set is produced by assigning each xi ∈ Xb to the nearest centroid in Ca.

Prediction accuracy is measured by evaluating the degree to which the class memberships

in Pb correspond to the cluster assignments in Cb.

To numerically evaluate prediction accuracy, Tibshirani et al. (2001) proposed a new

pairwise measure for comparing partitions, referred to as prediction strength. For each

cluster in the test clustering Cb = {C1, . . . , Ck}, we identify the number of pairs of objects

assigned to the same cluster that also belong to the same class in the prediction Pb. These

associations can be represented as a n
2×

n
2 binary matrix M, where Mij = 1 only if the pair

(xi,xj) are co-assigned in both Cb and Pb. From this matrix, an evaluation is computed

based on the cluster containing the smallest fraction of correctly predicted pairs:

S(Cb,Pb) = min
1≤h≤k

 1
|Ch| (|Ch| − 1)

∑
xi 6=xj∈Ch

Mij

 (3.34)

The cross-validation process is repeated over τ runs for each candidate value k in the

range [kmin, kmax]. The authors suggest a heuristic approach to select the final number

of clusters, which is chosen to be the largest k such that ps(k) is above a user-defined

threshold. This can be viewed as the selection of the largest number clusters that can be

reliably predicted for a given dataset. They note that a threshold in the range [0.8, 0.9]

was appropriate for the datasets with which they evaluated the algorithm.

As a simple example, we consider a single cross-validation run for k = 2 applied to

the set of 34 data objects shown in Figure 3.3(a). This dataset is randomly divided into

two subsets containing 17 objects each. A training clustering Ca is generated on the first

subset and a test clustering Cb is generated on the second, as shown in figures 3.3(b) and

3.3(c) respectively. The centroids µ1 and µ2 of Ca are subsequently used to build a nearest

centroid classifier, which produces the predicted classification Pb for the set of test objects

as illustrated in Figure 3.3(d). By constructing a 17 × 17 co-assignment matrix M from

Cb and Pb, and applying Eqn. 3.34, we can calculate that this run leads to a prediction

80



(a) Full dataset

µ2
µ1

(b) Training clustering (Ca)

(c) Test clustering (Cb)

µ2
µ1

(d) Predicted clustering (Pb)

Figure 3.3: Example of applying prediction-based validation to examine the suitability
of a clustering model with k = 2 for a synthetic dataset of 34 data objects.

strength of S(Cb,Pb) = 0.43, indicating that the clustering model is relatively unstable. In

practice, multiple cross-validation runs would be applied to produce a result that is robust

to the effects of unbiased random sampling.

A similar approach for selecting the number of clusters was described by Roth et al.

(2002), which also makes use of two-fold cross validation. However, prediction accuracy

was measured by finding the optimal correspondence of the clusters in the test clustering

with the predicted clusters using the Hungarian method (Kuhn, 1955) and computing the

number of incorrect assignment predictions. An evaluation for the instability of a clus-

tering model is found by averaging the number of incorrect assignments over τ iterations.

Another variation of this approach was discussed by Giurcaneanu & Tabus (2004), who

suggested evaluating prediction accuracy using a measure related to the partition distance

index defined in Eqn. 3.23. Specifically, the partition similarity between a test cluster-

ing Cb and a corresponding prediction Pb is equivalent to the inverse of the normalised

partition distance between the two groupings:

PSIM(Cb,Pb) = 1− D(Cb,Pb)
(n− 1)

(3.35)

A higher mean value for this index across τ runs indicates that the clustering model under

81



consideration affords a greater degree of stability.

3.5 Summary

In this chapter, we surveyed a range of approaches for assessing the validity of cluster-

ing solutions, and the models used to produce them. External validation methods have

been widely used in the document clustering literature for evaluating the ability of novel

clustering methods to uncover the natural classes in pre-classified corpora. Hence, in the

remainder of this thesis we make extensive use of external indices when comparing the

relative performance of clustering algorithms. It is important to note that a priori class

information will generally be inaccessible in real unsupervised tasks, making external

validation methods inappropriate for problems such as model selection. As an alterna-

tive, internal validation indices have frequently been employed for this task in the past.

Unfortunately, internal indices often exhibit biases towards clusters with certain charac-

teristics. Recent work has shown model selection methods based on stability analysis to

be superior in domains such as bioinformatics (Dudoit & Fridlyand, 2002). However, the

computational cost of generating and analysing many clusterings can be prohibitive for

large, high-dimensional datasets. Consequently, these methods have rarely been applied

by researchers working with text data. We examine this issue in detail in Section 7.2 and

propose a new strategy for greatly enhancing the scalability of stability analysis methods.

82



Chapter 4

Text Clustering Toolkit

4.1 Introduction

For researchers interested in the exploration of unstructured text datasets, the absence of

a comprehensive toolkit providing access to state-of-the-art algorithms represents a signif-

icant obstacle. Motivated by this problem, we have developed the Text Clustering Toolkit

(TCT)1, a new Java-based framework for document clustering, which provides researchers

with the ability to compare and extend many popular cluster analysis procedures. In

this chapter, we describe the architectural design and functionality of TCT, and provide

practical details regarding its implementation and usage.

4.1.1 Design Considerations

Unlike existing machine learning toolkits, many of which are limited to the demonstration

of specific types of learning algorithm, we have aimed to create a framework for unsuper-

vised learning that is modular and extensible. In particular, our goal has been to provide

researchers with a test-bed to facilitate both the evaluation of existing techniques and

the development of novel analysis procedures. Many clustering techniques share common

characteristics, such as the iterative reassignment process common to partitional clustering

algorithms. We have tried to ensure that implementations of frequently employed routines

are readily available to serve as “building blocks” for new algorithms. By abstracting away

these lower-level procedures, TCT allows researchers to concentrate on more sophisticated

aspects of their algorithms.
1Available from http://mlg.ucd.ie/tct

83



With TCT, we aimed to produce a set of loosely coupled libraries suitable for a va-

riety of tasks, without significantly compromising on efficiency or scalability. While our

current focus is on the analysis of text data, we envisage that TCT will provide a basis

for unsupervised learning applications in other areas, such as bioinformatics and image

processing.

4.2 Toolkit Structure

In this section, we describe the overall architecture of TCT, and highlight important

aspects of the functionality of the toolkit.

4.2.1 Architecture

The architecture of the toolkit reflects the considerations described in the previous section.

To support the development of a wide range of machine learning applications, TCT is

designed around a layer-based architecture, containing generic components that can be

easily extended and customised for problem-specific tasks. With regard to the actual

structure of the toolkit, it may be divided into three distinct layers as shown in Figure 4.1.

These layers correspond to three separate libraries: the matrix library, the core learning

library, and the document clustering library.

Vector 
Operations

Matrix 
Operations

Storage 
I/O

Matrix
Library

Core Data Structures

Preprocess 
Methods

Clustering 
Methods

Validation 
Methods

Core
Learning
Library

Corpus Data Structures

Document
Clustering
Library

Text-Specific Methods

User Applications

Figure 4.1: Design of the layer-based architecture for the Text Clustering Toolkit (TCT).

84



Matrix Library

Many unsupervised learning algorithms can be reduced to a series of matrix and vector

operations. Thus, the foundation layer of the toolkit stack consists of a library providing

essential linear algebra operations. Feature spaces, graphs, and other data models may be

represented as matrices and manipulated by this library. TCT includes support for both

dense and sparse matrices, which are useful for representing different types of data. In

these cases, the matrix library supports functionality that is comparable to that provided

by commercial offerings such as the MATLAB environment2. This includes operations

for EVD and SVD computation, sparse and dense matrix multiplication routines, and

functions for generating a variety of statistics describing a given vector or matrix.

Core Learning Library

The central layer of the stack structure consists of two parts. Firstly, we provide a range

of key data structures relevant to various clustering tasks. This includes generic struc-

tures for representing data in feature spaces, and models for hard, soft and co-clusterings.

The second part of this layer consists of a large set of modular components, providing

implementations for many of the algorithms discussed in this thesis. Conceptually, the set

of component implementations in the learning library may be sub-divided into groups of

methods corresponding to the three phases of the clustering workflow originally shown in

Figure 1.2: preprocessing, clustering and validation.

Document Clustering Library

At the top of layer stack, we have built a library specific to our area of interest, comprising

of data structures and algorithms relevant to the task of document clustering. The former

covers implementations for models commonly used to represent sparse text corpora, while

the latter includes algorithms specific to text mining tasks, such as term weighting, term

selection and cluster labelling methods. Custom applications may subsequently be built

upon the document clustering library to provide users with access to toolkit functionality.

It is worth noting that this library could be interchanged for an alternative implementation

when working in other domains.
2http://www.mathworks.com/products/matlab/

85



4.2.2 Functionality

Data Formats

For matrix storage, we support dense, whitespace-separated matrix storage with row la-

bels, coordinate-based storage compatible with the standard Matrix Market exchange

format3 for sparse matrices, and a variety of character delimited formats compatible with

MATLAB and Microsoft Excel. We build upon these basic formats to provide storage for

both generic, low-dimensional datasets and sparse, high-dimensional document collections.

In the latter case, the original term strings are available for use in the generation of cluster

labels.

Repository

While TCT can make use of stand-alone files, to provide ready access to datasets when

performing experimental evaluations, the document clustering layer of the toolkit includes

support for storing corpora in a local repository. In addition to providing access to various

aspects of the data (such as raw documents or terms), we also provide the facility to save

newly generated clusterings or reduced representations to the repository, which can be

retrieved for use at a later time.

Data Preprocessing Components

For preprocessing document collections, we provide a standard “bag of words” parser,

which supports both word and n-gram tokenisation. Extremely rare or frequent terms

may be removed at this stage to reduce the size of the corpus vocabulary. After an initial

representation of the data model is produced, a variety of term weighting functions may

be applied corresponding to those originally described by Salton & Buckley (1987). In

addition, many state-of-the art methods are available to tackle issues resulting from high

dimensionality, including many of the feature selection and extraction strategies described

in Chapter 2. For the construction of affinity and kernel matrices, we provide imple-

mentations for a range of similarity metrics and kernel functions. A full list of currently

supported preprocessing components is given in Table 4.3.
3See http://math.nist.gov/MatrixMarket for format specifications.

86



Category Components
Parsing • Word-based bag of words parser

• N-gram bag of words parser

Normalisation • Tf-idf normalisation (and variants)
• Document length normalisation

Feature selection • Mean tf-idf
• Term variance quality
• Term contribution

Feature extraction • Principal Component Analysis
• K-dimensional spectral embedding
• Bipartite spectral embedding

Similarity measures • Euclidean distance
• Minkowski distance
• Cosine similarity/distance
• Jaccard similarity

Kernel functions • Normalised linear kernel
• Gaussian RBF kernel
• Polynomial kernel

Table 4.1: A list of standard preprocessing methods supported by TCT.

Clustering Components

TCT contains implementations for a wide variety of classical algorithms, such as k-means

and agglomerative hierarchical clustering, together with recent techniques based on spec-

tral decomposition, non-negative matrix factorisation and ensemble clustering. While we

have primarily used these implementations in conjunction with text data, the majority of

these algorithms are also relevant to other types of data. Table 4.2 provides a complete

list of supported algorithms. Note that, in addition to those listed here, implementations

of the novel methods proposed later in chapters 6 and 7 are also included in the toolkit.

Validation Components

Since one of the primary aims of this toolkit is to provide a test-bed for the design and

development of new clustering methods, we have paid particular attention to providing

a range of components for assessing the output of clustering algorithms and for guiding

parameter selection procedures. For benchmark comparisons, a number of external val-

idation indices are provided, including all of those discussed in Section 3.3. For model

selection, both internal indices and stability-based validation methods are available. A

87



Category Components
Hierarchical algorithms • Agglomerative (single, complete, average linkage)

• Min-max agglomerative clustering
• Bisecting k-means
• Principal Direction Divisive Partitioning

Partitional algorithms • Standard/generalised k-means
• Spherical k-means
• Fuzzy c-means

Matrix decomposition • NJW spectral clustering
• Bipartite spectral co-clustering
• Euclidean NMF clustering
• KL divergence NMF clustering
• Symmetric NMF

Kernel clustering • Kernel k-means
• Weighted kernel k-means
• Kernel bisecting k-means

Ensemble clustering • Subsampling-based generation
• Random parameter value generation
• Initialisation-based generation
• Co-association integration
• Hypergraph integration
• Bipartite integration
• Correspondence-based integration

Table 4.2: A list of standard clustering methods supported by TCT.

full list of supported validation methods is given in Table 4.3.

4.3 Implementation and Use

In this section we provide details regarding the practical implementation of the TCT

framework, and describe several ways in which the toolkit may be used by researchers.

4.3.1 Implementation Details

To provide cross-platform compatibility, TCT was developed using Sun Java (version 1.5)

on Ubuntu Linux 6 (Intel x86). In addition, it has been tested on Windows XP and Apple

OS 10.4. The key data structures in the matrix and core learning layers take advantage of

new features in Java 1.5, including generics and greater type safety. When implementing

TCT, we found that the object-oriented nature of the language lends itself naturally to

the modular, component-based architecture of the toolkit.

As discussed previously, the issue of scalability is highly important when performing

88



Category Components
Internal indices • CH-index

• C-index
• Generalised Dunn’s index
• Generalised DB index
• Silhouette index
• Bayesian information criterion

External indices • Purity index
• Class accuracy
• Rand index
• Corrected Rand index
• Jaccard index
• Fowlkes-Mallows index
• F-measure
• Partition similarity/distance
• Normalised entropy
• Normalised mutual information

Stability analysis • Pairwise stability analysis
• Prediction-based analysis
• Correspondence-based analysis

Table 4.3: A list of standard validation methods supported by TCT.

text mining tasks. To improve efficiency, many of the clustering and validation methods

in TCT have been implemented in a way that takes advantage of the sparse matrix repre-

sentation used for corpus storage. For instance, calculating similarity values or computing

cluster centroids can be made significantly more efficient by only iterating over the non-

zero entries in a sparse matrix A ∈ IRm×n, rather than examining all m ·n entries. Similar

improvements may also be made when applying spectral dimension reduction methods.

To this end, we include a Java Native Interface (JNI) wrapper for ARPACK (Lehoucq

et al., 1997), a standard library of FORTRAN routines for computing a small number

of eigenvectors or singular vectors for a matrix. These routines are particularly efficient

when employed to sparse matrices, making them well suited to the task of decomposing

sparse corpus representations.

4.3.2 User Tools

Our primary focus has been on the production of an underlying framework that may

be extended by developers and researchers alike. However, to provide direct access to

the functionality of the toolkit, the TCT distribution comes with a set of command-line

applications covering all aspects of the cluster analysis process. The applications included

89



are as follows:

parse-vsm: Employs a standard word-based bag of words parser to produce a vector space

model from a raw collection of unstructured text documents.

parse-ngram: Employs an n-gram bag of words parser to process a raw collection of

unstructured text documents.

cluster-hier: A tool for comparing agglomerative and divisive document clustering al-

gorithms, including support for a variety of linkage strategies for the former and

several representative algorithms for the latter.

cluster-part: A tool for experimenting with popular partitional clustering algorithms

that produce hard and soft clusterings.

cluster-decomp: Supports the comparison of a range of previously proposed and novel

clustering methods based on matrix decomposition, which are suitable for text data.

cluster-kernel: A tool for comparing various kernel clustering methods, and examining

the effects of applying different kernel functions on text data. In addition, this

application provides access to a range of diagonal dominance reductions strategies

(these strategies are described in detail in Section 6.3).

cluster-ensemble: Provides access to ensemble techniques for document clustering. As

noted in Section 2.9, there are a number of important design decision that must

be made when employing these techniques. Therefore, this tool allows users to

experiment with different ensemble generation strategies, integration methods and

parameter values.

cluster-label: A tool for comparing different approaches for generating interpretable

labels for clusterings of text data, based on the techniques described later in Sec-

tion 6.2.

A sample of the terminal output produced by the cluster-label tool when applied to

the bbcsport dataset is shown in Figure 4.2. These command-line applications were used

to produce the experimental results presented throughout this thesis.

90



=== cluster-label : ’bbcsport’ =========================
Loaded corpus (Documents=737 Features=4613)
Loaded natural classes (K=5)
>> Pre-processing
Applying TfIdfNormalizer (tf=logarithmic idf=logarithmic)
Applying UnitLengthNormalizer
>> Clustering
Constructing linear kernel matrix (CosineSimilarity)
Selected clustering algorithm: KSSC (k=5)
Selected label generator: IGAIN (top=9)
Applying clustering algorithm...
Generated 5 clusters in 1.8 seconds
>> Post-processing
Validation: NMI=0.87
Applying label generator...
Generated 5x9 cluster labels
rugby : rugby,wales,ireland,nation,scotland,robinson,england,france,six
tennis : seed,open,6-3,6-4,australian,7-6,tennis,7-5,roddick
athletics: olympics,athlete,indoor,race,athens,drug,european,gold,iaaf
football : chelsea,club,arsenal,league,united,football,boss,manchester,manager
cricket : cricket,one-day,pakistan,wicket,series,india,test,bowl,bowler

Figure 4.2: Output for the cluster-label tool when applied to the bbcsport dataset.

4.3.3 Sample Usage

The components provided in the core and document clustering libraries of TCT are de-

signed to be used in a modular fashion, allowing developers to chain together multiple

analysis procedures to produce custom applications. To demonstrate how this works in

practice, we consider a sample configuration that combines several procedures as defined

by the workflow shown in Figure 4.3. Specifically, given a previously parsed document

collection, we wish to chain five individual toolkit components pertaining to different

phases of the cluster analysis process: preprocessing (TF-IDF normalisation, k-way spec-

tral decomposition), clustering (ensemble clustering based on resampling and hierarchical

co-association integration) and validation (the external NMI measure).

Figure 4.4 provides a listing for the Java source code for an application that imple-

ments the configuration given in Figure 4.3. By utilising the TCT libraries, this relatively

complex configuration can be rendered using few lines of code. It is clear from these figures

that there is a direct mapping between the conceptual cluster analysis workflow and the

corresponding application implementation. It is also apparent from this example that the

toolkit allows us to experiment with novel algorithm combinations.

91



4.4 Summary

In this chapter we provided an overview of the design and implementation of the Text Clus-

tering Toolkit (TCT), a new framework for the development of unsupervised data analysis

applications. While this toolkit is specifically aimed at researchers working with docu-

ment collections, its modular, extensible nature makes it suitable for use in the context of

a variety of alternative machine learning problems. This chapter also introduced specific

functions and example usage. Further details regarding technical aspects of the imple-

mentation, including developer documentation and user tool manual pages, are available

at the toolkit homepage4.

4TCT homepage: http://mlg.ucd.ie/tct

92



Term-
document 

matrix
Normalised 
TD matrix

Similarity 
matrix

Hard 
Clustering

Spectral 
Embedding

NMI 
Score

Cosine 
Sim.

NMI 
Index

Spectral 
Decomp

TF-IDF

Cluster 
Ensemble

Figure 4.3: Sample cluster analysis workflow that chains multiple toolkit components.

public class TestApplication extends TCTApplication
{
public double runTest( String[] args ) throws Exception
{
// Initialise toolkit
init(args);

// Load dataset from the repository
Corpus corpus = repository.getCorpus( "bbcsport" );
int k = corpus.getNaturalClasses().size();
// Apply TF-IDF pre-processing
new TfIdfNormalizer().apply(corpus);

// Build a cosine similarity matrix
SymMatrix S = new CosineSimilarity().buildSimilarityMatrix( corpus );
// Apply spectral decomposition to the matrix
SpectralDecomposition decomp = new NCutAffinityDecomposition( S, k );
Embedding spectralEmbedding = decomp.apply(corpus);

// Apply ensemble clustering to the embedding
Generator generator = new SamplingGenerator( new KMeans( k ) );
Integrator integrator = new HierCoAssociationIntegrator( k );
EnsembleClusterer ensemble = new EnsembleClusterer( generator, integrator );
Clustering clustering = ensemble.findClusters( spectralEmbedding );

// Validate the clustering using NMI external validation
return new NMIMeasure().validate( clustering );

}
}

Figure 4.4: Source code for an application implementing the cluster analysis workflow
defined in Figure 4.3, which involves chaining multiple toolkit components.

93



Chapter 5

Baseline Analysis

5.1 Introduction

When exploring an unstructured document collection in a real-life learning scenario, a

user is faced with the dilemma of choosing from among the many existing approaches

that have been proposed for document clustering, such as those reviewed in Chapter 2.

A similar problem arises when selecting a suitable validation method from those surveyed

in Chapter 3. Although several authors have performed comparative evaluations on text

data involving a limited number of algorithms (e.g. Steinbach et al., 2000), we use TCT

to provide a comprehensive evaluation of classical cluster analysis methods, allowing us

to examine their respective advantages and limitations. This evaluation also serves as a

baseline for the assessment of the novel approaches described in chapters 6 and 7.

5.2 Experimental Setup

Before detailing our experimental results, we begin by providing a full description of the

datasets and experimental methodologies which are common to all experiments discussed

in the remainder of this thesis.

5.2.1 Real-World Datasets

When assembling a set of real-world document collections for experimental evaluation, we

aimed to select corpora that differ significantly in their theme, dimensions, complexity

and underlying structure. Of those chosen, the smallest contains 505 documents, while

the largest contains 8580 documents. Some of these corpora have been widely used as

94



Dataset Description n m k̂ n̄c Balance
bbc News articles from BBC 2225 9635 5 445 0.755
bbcsport Sports news articles from BBC 737 4613 5 147 0.377
classic CISI/CRAN/MED sets 7097 8276 4 1774 0.322
classic3 CACM/CISI/CRAN/MED sets 3893 6733 3 1297 0.708
cstr Computer science technical abstracts 505 2117 4 126 0.398
ng17-19 Overlapping newsgroups 2625 12020 3 875 0.824
ng3 Well-separated newsgroups 2928 12357 3 976 0.943
reuters5 Top 5 categories from Reuters-21578 2317 4627 5 463 0.136
reviews Entertainment articles from TREC 4069 18152 5 813 0.099
sports Sports news articles from TREC 8580 14615 7 1225 0.036

Table 5.1: Details of the real-world text datasets used in experiments.

benchmarks for document clustering, while others represent novel collections that have

proved useful during the course of our research. In all cases, external knowledge in the

form of a manual classification of documents was available for comparison purposes. A

full summary of these datasets is provided in Table 5.1, where n denotes the number of

documents, m denotes the number of terms, k̂ indicates the number of natural classes in

the data, and n̄c denotes the mean number of documents in each class. In addition, the

“balance” of each dataset refers to the ratio of the size of the smallest natural class in the

data relative to the size of the largest.

News Articles

Articles from news sources provide a rich source of topics for document clustering due

to their high quality and tendency to cover a wide range of interesting themes. For the

purposes of our evaluation, we constructed two new text corpora1 from articles published

by the BBC news service2. Specifically, the bbc corpus consists of 2225 complete news arti-

cles published during 2004-2005, which cover five topical areas: ‘business’, ‘entertainment’,

‘politics’, ‘sport’, and ‘technology’. The bbcsport corpus consists of a smaller set of 737

sports news articles from the same source and time period, also containing five categories:

‘athletics’, ‘cricket’, ‘football’, ‘rugby’, and ‘tennis’. An advantage of producing corpora

from these sources is that the data and any resulting clusterings may be interpreted by

researchers without the need for any specialist knowledge regarding the subject matter.

Reuters-21578 is a collection of documents published by Reuters newswire in 1987,
1Available from http://mlg.ucd.ie/datasets/
2See http://news.bbc.co.uk

95



which has become the most widely used benchmark for text classification. The entire col-

lection consists of 21578 documents relating to 135 topics. In our evaluations we consider

a subset of documents from this collection, referred to as reuters5, which is constructed

as described by Lafferty & Lebanon (2004). Specifically, all documents not assigned to

a single category are removed, and documents assigned to the five largest categories are

then selected: ‘earn’, ‘acq’, ‘crude’, ‘money-fx’ and ‘grain’.

The reviews and sports datasets3 have been used by a number of authors in the evalua-

tion of document clustering algorithms. They consist of subsets of news articles that were

selected from the TREC collection based on their theme. The reviews dataset contains

articles, originally published by the San Jose Mercury newspaper, which pertain to food,

movies, music, radio and restaurants. The sports dataset contains sports news articles

from the same source covering American football, baseball, basketball, boxing, cycling,

golf and ice hockey. Both of these datasets contain largely overlapping natural classes

that differ significantly in size, which is reflected by their low balance scores in Table 5.1.

Technical Abstracts

The classic3 and classic datasets are formed from sets of technical abstracts contained

in Cornell’s SMART repository4, which have been widely used to evaluate supervised

text mining procedures. The former is constructed from sets of abstracts from informa-

tion retrieval papers (CISI), medical journals (Medline) and aeronautical systems papers

(Cranfield). The classic dataset also includes a fourth set, containing abstracts from

computer systems research papers (CACM).

The cstr dataset5 represents a smaller collection of abstracts that have also frequently

been used for benchmark evaluation. The abstracts are taken from technical reports pub-

lished by members of the Department of Computer Science at the University of Rochester,

and relate to four fields of research: AI, robotics/vision, systems, and theory.

Newsgroup Messages

The 20 Newsgroups (20NG) collection6 contains 20,000 Usenet postings, consisting of

1000 documents from each of 20 different newsgroups covering a wide range of topics. The
3Available from http://www.cs.umn.edu/∼karypis/cluto
4Available from ftp://ftp.cs.cornell.edu/pub/smart
5Original abstracts available from http://www.cs.rochester.edu/trs
6Available from http://people.csail.mit.edu/jrennie/20Newsgroups/

96



categorisation scheme for the collection is derived from these newsgroups. Various subsets

of this collection have recently been used to evaluate clustering algorithms. Specifically,

we consider the ng3 subset, which is composed of three relatively well-separated groups

pertaining to religion, politics and cryptography. We also make use of the ng17-19 subset,

which contains messages from three newsgroups that exhibit considerable overlap.

5.2.2 Artificial Datasets

While many authors evaluating clustering techniques have made use of synthetic datasets,

the generation of data that realistically models the distribution of term frequency values

in natural language text is difficult. As an alternative, we used the 20NG collection as a

source for artificially composed datasets because it contains a range of topics that overlap

to varying degrees. These datasets are specifically designed to evaluate the ability of cluster

analysis methods to work on data containing a variety of different cluster structures, such

as unbalanced cluster sizes or overlapping clusters. From the full collection we derived a

large number of smaller datasets for which the correct value of k̂ is known. Specifically,

we constructed 84 sets in total7, 12 for each value of k̂ ∈ [2, 8]. Half of these datasets

consist of newsgroups that are reasonably compact and well-separated (e.g. ‘graphics’,

‘hockey’, ‘mideast’). The remaining datasets are formed from newsgroups that overlap

considerably (e.g. ‘mac’, ‘windows’). These two halves are further divided into subsets of

datasets containing clusters of different proportions, in a manner similar to that suggested

by Giurcaneanu & Tabus (2004) for producing artificial data: balanced clusters containing

500 documents each, unbalanced clusters where one cluster contains 10% of the documents

in the dataset, and unbalanced clusters where one cluster contains 60% of the documents.

In all cases the documents were randomly drawn from each newsgroup. The resulting

datasets range in size from 1000 to 4000 documents, with the corresponding dimensionality

ranging from 4674 to 16282 unique terms.

5.2.3 Data Preprocessing

The collections of raw documents were parsed and processed according to the standard

text mining practises described in Section 2.2.1. For all datasets, we employed a stop-

list containing 300 entries8 to remove common functional words. We then applied the
7Available from http://mlg.ucd.ie/datasets/
8Available from http://mlg.ucd.ie/files/tct/stopwords.txt

97



standard Porter suffix stripping algorithm (Porter, 1980) to stem words to their roots.

We subsequently excluded terms occurring in less than three documents, which is widely

performed in text mining tasks to reduce dimensionality (Drucker et al., 1999). To weight

term frequency values, we use a variant of log-based tf-idf, where the inverse document

frequency component is defined as idf(i, j) = log m
dfi

. Unless otherwise specified, all ex-

periments in this thesis involve clustering using the cosine measure (2.4) to assess the

similarity between document vectors.

5.2.4 Evaluation Criteria

Accuracy

In Section 3.3 we described a variety of existing approaches that may be used to measure

the agreement between two partitions of the same dataset, which is frequently done when

comparing a newly generated clustering solution to a set of manually labelled natural

classes. However, while a number of these indices have been specifically used in conjunction

with text data, many of them exhibit biases with respect to the number of clusters in a

partition or their structure.

To demonstrate this, we consider the mean scores computed on a large number of pairs

of clusterings for four popular indices: NMI, purity, normalised entropy (here we consider

the inverse 1 −NE(C)) and the F-measure. In Figure 5.1(a), where the clusterings have

(a) Balanced clusters (b) Unbalanced clusters

Figure 5.1: Mean external validation index scores based on the pairwise agreement
between random partitions of 1000 data objects, illustrating the biases of popular external
indices with respect to the number of clusters k and cluster balance.

98



been generated by random assignment, we see that the two measures based on set matching

award relatively high scores to trivial solutions, particularly for smaller values of k. In the

experiments summarised by Figure 5.1(b), the solutions were also randomly generated, but

in each case one cluster was constrained to be approximately 25% the size of the others,

leading to unbalanced clusterings. As a consequence of this, the purity, entropy and F-

measure techniques all exhibit a significant bias in relation to the relative proportions

of the clusters. In contrast, the NMI measure exhibits little bias toward the number of

clusters, particularly for smaller values of k, and the quality of its evaluations are not

influenced by cluster balance. We have observed similar behaviour when examining other

configurations involving skewed cluster sizes.

Our empirical observations corroborate the theoretical work of Strehl & Ghosh (2002a),

who proposed NMI as a means of providing a robust assessment of external accuracy. For

the remainder of this thesis, we employ NMI as calculated using Eqn. 3.33 to compare

the relative accuracy of document clustering algorithms. It is worth noting that, in recent

literature, NMI has largely become the standard technique for performing this task.

Stability

When considering stochastic clustering algorithms, not only is it important to consider the

ability of an algorithm to produce accurate clusters, but also the frequency with which

such solutions are produced. While it is possible to consider the variance of the NMI

scores resulting from several runs of the algorithm, this can sometimes be deceptive as it

is possible for an algorithm to produce solutions of approximately equal accuracy but that

differ significantly in terms of cluster content. Therefore, another aspect for evaluation

is related to the notion of stability introduced in Section 3.4. In cases where we wish

to assess the stability of stochastic techniques, we employ an extension of the average

normalised mutual information (ANMI) measure (Strehl & Ghosh, 2002a). Formally,

given a collection of r hard clusterings C = {C1, . . . , Cr} generated on the same dataset,

we measure the average NMI score between each unique pair of solutions:

ANMI(C) =
1

r(r − 1)

∑
Ci,Cj∈C

NMI(Ci, Cj) (5.1)

A larger value is indicative of a higher level of agreement between the clusterings in C,

suggesting that the algorithm producing the solutions affords a greater degree of stability.

99



5.3 Comparison of Benchmark Clustering Algorithms

To provide a baseline for comparing clustering algorithms in the remainder of this the-

sis, we now present an evaluation of the standard partitional and hierarchical clustering

algorithms described in sections 2.3 and 2.4 respectively.

5.3.1 Partitional Algorithms

We performed a comparison of three classical partitional clustering methods that have

been widely employed to many types of data including document corpora: standard k-

means with cosine similarity (KM), spherical k-means (SKM), and EM clustering. Each

experiment was run for 200 executions on the real datasets listed in Table 5.1. In all

cases, the parameter k was set to correspond to the number of natural classes k̂, and the

algorithms were initialised with random cluster assignments.

Table 5.2 presents the mean and standard deviation of the NMI scores for the three

partitional algorithms. We observe that k-means can potentially produce reasonably accu-

rate clusterings of text data. However, its performance is highly dependent on the choice

of initial clusters. The other algorithms demonstrated similar sensitivity, resulting in a

high level of variance in terms of accuracy on all datasets. The SKM algorithm is ap-

proximately equivalent to k-means, with the sole difference that document and centroid

vectors are normalised to unit length. Therefore, it is unsurprising that the performance

of the two algorithms is often highly similar. Of the three approaches, the EM algorithm

consistently resulted in the lowest clustering accuracy.

Dataset KM SKM EM
bbc 0.81 ± 0.08 0.82 ± 0.08 0.81 ± 0.08
bbcsport 0.73 ± 0.10 0.77 ± 0.10 0.73 ± 0.09
classic 0.70 ± 0.04 0.71 ± 0.03 0.68 ± 0.04
classic3 0.93 ± 0.08 0.90 ± 0.12 0.86 ± 0.11
cstr 0.69 ± 0.05 0.65 ± 0.03 0.66 ± 0.05
ng17-19 0.41 ± 0.12 0.39 ± 0.12 0.35 ± 0.10
ng3 0.83 ± 0.10 0.83 ± 0.10 0.81 ± 0.12
reuters5 0.55 ± 0.07 0.55 ± 0.05 0.50 ± 0.07
reviews 0.56 ± 0.08 0.56 ± 0.08 0.52 ± 0.07
sports 0.62 ± 0.05 0.60 ± 0.06 0.53 ± 0.05

Table 5.2: Summary of NMI accuracy results (mean and standard deviation) for parti-
tional clustering methods, when applied to real-world text datasets.

100



5.3.2 Hierarchical Algorithms

Agglomerative Clustering

We now turn our attention to evaluating methods based on hierarchical agglomeration,

which has previously been regarded as the prototypical strategy for clustering document

collections. As discussed in Section 2.4, a number of strategies exist for determining which

pair of clusters should be merged at each stage of the agglomeration process. We evaluate

four linkage strategies based on a precomputed cosine similarity matrix: average linkage

(AHC-AL), single linkage (AHC-SL), complete linkage (AHC-CL), and clustering based

on the min-max graph partitioning criterion (AHC-MM). In all experiments, the merging

process is terminated when k̂ leaf clusters remain. As these techniques are deterministic,

instability is not an issue and a single execution on each dataset is sufficient to produce a

definitive solution.

The NMI scores listed in Table 5.3 for the traditional linkage strategies (AL/SL/CL)

clearly illustrate the significant drawbacks of agglomerative clustering techniques when

working with noisy, real-world data. For the AHC-AL and AHC-CL methods, the presence

of outlying documents leads to poor merging decisions being made in the early stages of

the clustering process, which cannot be subsequently rectified. In the case of AHC-SL,

the tendency of the single linkage strategy to suffer from the effect of “chaining” is highly

evident. For all three strategies, these problems are often reflected in the generation

of a single, dominant cluster and one or more singleton clusters. As a result, the final

clustering is often little better than random, as documents are coerced into being co-

Dataset AHC-AL AHC-SL AHC-CL AHC-MM
bbc 0.03 0.02 0.17 0.74
bbcsport 0.48 0.03 0.46 0.90
classic 0.01 0.01 0.22 0.65
classic3 0.01 0.01 0.01 0.01
cstr 0.51 0.04 0.40 0.70
ng17-19 0.04 0.01 0.13 0.39
ng3 0.01 0.01 0.20 0.82
reuters5 0.61 0.02 0.28 0.50
reviews 0.06 0.01 0.14 0.57
sports 0.20 0.01 0.11 0.60

Table 5.3: Summary of NMI accuracy results for agglomerative hierarchical clustering
methods, when applied to real-world text datasets.

101



assigned even though they do not share a common topic or set of terms. It is interesting

to note that, when evaluating hierarchical methods, some authors tend to make use of

external validation measures such as purity (3.19) or entropy (3.29), which can produce

reasonably high scores for such unbalanced clusterings, obscuring the true degree of error

in the co-assignment of documents.

In contrast to the other linkage strategies, the min-max cut technique (AHC-MM)

proposed by Ding & He (2002) lead to significantly better clusterings. Since values for this

criterion are scaled by self-similarity (see Eqn. 2.20), it is possible that small clusters can

result in large linkage values, allowing them to be merged with larger clusters. This leads

to an inherent bias toward balanced clusters, which minimises the influence of outliers and

reduces the tendency to produce singletons. However, as evidenced by the poor solution

produced for the classic3 dataset, inappropriate merging decisions can still be made when

using this criterion. This is surprising given the well-separated nature of the underlying

classes in this dataset, which are identified with relative ease by the partitional clustering

algorithms discussed previously.

Refined Agglomerative Clustering

Several authors have considered the application of iterative relocation to improve the

output of agglomerative clustering. Ding & He (2002) proposed a greedy process where

documents are moved between clusters based on a given objective function, in a manner

similar to that used by the “first variation” algorithm described by Dhillon et al. (2002a).

However, the computational cost of this process can vary significantly, depending on the

size of the dataset and the number of refinement iterations. As a simpler, less time

consuming alternative, we suggest the application of the standard k-means algorithm

with cosine similarity to the output of an agglomerative algorithm, so that erroneously

assigned documents can be moved to more appropriate clusters. The refinement process

may also be viewed as using hierarchical clustering to provide k-means with a deterministic

and hopefully accurate set of initial clusters. This idea was originally proposed by Jain &

Dubes (1988) and developed by Cutting et al. (1992) in the ‘buckshot’ algorithm, although

it has not been commonly considered in recent clustering literature. It should be noted

that the application of all such refinement techniques, which effectively involve moving

documents between leaf nodes of the hierarchy, has the effect that the clustering can no

longer be interpreted using a dendrogram, which may affect the interpretability of the

102



Dataset AHC-ALR AHC-SLR AHC-CLR AHC-MMR
bbc 0.38 0.02 0.65 0.88
bbcsport 0.48 0.45 0.78 0.95
classic 0.38 0.54 0.67 0.65
classic3 0.00 0.00 0.95 0.00
cstr 0.63 0.41 0.44 0.75
ng17-19 0.05 0.01 0.52 0.56
ng3 0.62 0.22 0.51 0.90
reuters5 0.68 0.66 0.59 0.58
reviews 0.44 0.01 0.55 0.67
sports 0.70 0.56 0.58 0.62

Table 5.4: Summary of NMI accuracy results for agglomerative hierarchical clustering
methods with refinement, when applied to real-world text datasets.

solution. However, the production of a more accurate, flat partition of the data may be

more useful than a trivial, inaccurate tree of clusters.

Table 5.4 provides a comparison of the NMI scores achieved by the agglomerative

methods with k-means refinement. We observe that the application of refinement can

often lead to significant increases in accuracy when compared to the results listed in

Table 5.3. In particular, the application of refinement subsequent to min-max linkage

clustering (AHC-MMR) produced highly accurate clusterings on several datasets, such as

the bbcsport and reviews corpora. However, the quality of the output of the hierarchical

algorithm still plays a significant role. For instance, AHC-MMR shows little improvement

on the classic3 dataset, where the singleton leaf clusters in the hierarchy lead k-means to

quickly converge to an almost identical final solution.

Divisive Clustering

We now investigate the performance of divisive clustering algorithms, which have fre-

quently been applied for document clustering. Specifically, we considered the Principal

Direction Divisive Partitioning (PDDP) and bisecting k-means algorithms. In the lat-

ter case, we examined cluster splitting based on both cluster size (BKM-S) and min-

imum average intra-cluster similarity (2.13) (BKM-A). For each split, we produced 20

randomly-initialised bisections, from which the best was selected as determined by the

mean document-centroid similarity criterion (2.12). Due to the stochastic element in the

bisecting k-means algorithm, we ran the entire process 100 times. In all experiments, we

103



Dataset PDDP BKM-S BKM-A
bbc 0.77 0.82 ± 0.04 0.83 ± 0.03
bbcsport 0.60 0.74 ± 0.03 0.74 ± 0.03
classic 0.65 0.71 ± 0.01 0.80 ± 0.09
classic3 0.85 0.94 ± 0.00 0.94 ± 0.00
cstr 0.64 0.71 ± 0.02 0.71 ± 0.02
ng17 0.29 0.46 ± 0.08 0.47 ± 0.07
ng3 0.81 0.71 ± 0.12 0.73 ± 0.12
reuters5 0.50 0.60 ± 0.02 0.62 ± 0.04
reviews 0.50 0.52 ± 0.04 0.53 ± 0.04
sports 0.67 0.61 ± 0.04 0.70 ± 0.05

Table 5.5: Summary of NMI accuracy results for divisive hierarchical clustering methods,
when applied to real-world text datasets.

stop the divisive process when the number of leaf clusters reaches k̂.

From the results listed in Table 5.5, we firstly observe that divisive techniques per-

form better on average than their agglomerative counterparts. This corresponds to the

experimental findings of Steinbach et al. (2000), who suggested that the improvement in

accuracy is due to the availability of a global view of the entire dataset at the beginning of

the clustering process. While bisecting k-means does exhibit some variance over multiple

runs, its output tends to be far more consistent than the randomly-initialised k-means

algorithm. The choice of cluster splitting criterion for bisecting k-means did not appear to

influence performance as greatly as one might expect, which may be due to the relatively

balanced nature of the group structures in many of the datasets under consideration. The

BKM-A splitting strategy lead to slightly higher mean NMI scores on several datasets,

with a particularly noticeable improvement on the sports corpus, which contains highly

unbalanced cluster sizes. This confirms our belief that the size-based BKM-S strategy is

generally unsuitable unless it is known in advance that a corpus will contain clusters of

approximately equal size.

While the PDDP algorithm has been widely used in the document clustering litera-

ture, our results indicate that it often performs worse than other hierarchical or partitional

methods when applied to data with significantly overlapping structures. Notably, it fre-

quently produced less accurate clusterings than those generated by bisecting k-means. On

the other hand, a significant benefit of PDDP is the deterministic nature of the algo-

rithm so that, like the agglomerative algorithms evaluated previously, a single execution

is sufficient to produce a definitive result. From a computational perspective, PDDP also

104



performs favourably when compared to the other hierarchical algorithms considered here.

Refined Divisive Clustering

We also considered the possibility of applying k-means to refine the output of hierarchical

divisive clustering algorithms. The PDDP-R approach is similar to that employed by

Kruengkrai et al. (2004), who used Gaussian EM clustering to improve the output of the

PDDP algorithm. However, the results given in the evaluation of the partitional algorithms

in Section 5.3.1 suggest that k-means with cosine similarity is better suited for this task

when working with text data. The combination of refinement with the size-based bisecting

k-means variant, denoted BKM-SR, is equivalent to the strategy proposed by Steinbach

et al. (2000). BKM-AR represents an analogous approach which makes splitting decisions

based on average intra-cluster similarity.

The application of refinement in conjunction with bisecting k-means lead to increases

in accuracy on certain datasets, although in the case of the classic and reuters5 corpora

we actually observed a decrease in the resulting NMI scores. The marginally better initial

partitions available to the BKM-AR method lead refined solutions that were better than

those produced by BKM-SR or PDDP-R. The gains in accuracy resulting from iteratively

relocating documents in clusterings produced by PDDP were quite significant. However,

these techniques do not frequently achieve scores comparable to those afforded by the best

agglomerative method (AHC-MMR). Once again, the application of refinement transforms

a nested hierarchy of clusters into a flat partition, which may impact upon interpretability.

Dataset PDDP-R BKM-SR BKM-AR
bbc 0.87 0.87 ± 0.03 0.87 ± 0.03
bbcsport 0.69 0.77 ± 0.04 0.76 ± 0.03
classic 0.70 0.69 ± 0.01 0.71 ± 0.03
classic3 0.95 0.95 ± 0.00 0.95 ± 0.00
cstr 0.70 0.72 ± 0.02 0.72 ± 0.03
ng17 0.56 0.47 ± 0.07 0.47 ± 0.08
ng3 0.88 0.73 ± 0.13 0.73 ± 0.12
reuters5 0.59 0.59 ± 0.02 0.60 ± 0.04
reviews 0.52 0.55 ± 0.05 0.54 ± 0.05
sports 0.65 0.61 ± 0.04 0.66 ± 0.05

Table 5.6: Summary of NMI accuracy results for divisive hierarchical clustering methods
with refinement, when applied to real-world text datasets.

105



5.3.3 Summary

While partitional clustering methods such as k-means are commonly employed in docu-

ment clustering, we observe that the success of these algorithms is largely dependent on the

choice of initial clusters. When using standard stochastic initialisation strategies, the ac-

curacy of solutions generated on the same data across multiple trials can vary significantly.

To address this problem, in Section 7.3 we propose an ensemble clustering approach that

combines multiple clusterings generated by k-means to produce a more robust solution.

From our comparison of hierarchical clustering algorithms, it is apparent that both

agglomerative and divisive techniques have their respective merits and drawbacks. Nei-

ther approach produced highly accurate clusterings on all the datasets considered in our

experiments. The agglomerative techniques, which have been widely used for document

clustering, can often produce meaningless clusterings in the presence of outliers. The use

of the min-max cut criterion (AHC-MM) does reduce this problem somewhat, although it

may still produce poor results due to erroneous merging decisions.

Of the divisive hierarchical approaches we considered, the bisecting k-means algorithm

appears to be the most promising. However, the sensitivity of the k-means algorithm to the

choice of initial clusters remains a factor in the production of stable, accurate bisections.

The execution of multiple iterations per bisection alleviates this somewhat. Unfortunately,

this largely negates the efficiency benefits of the algorithms, and the choice of a suitable

candidate bisection essentially introduces a cluster validation problem. Experimental re-

sults show that our suggestion of applying k-means with cosine similarity to refine the leaf

nodes of a hierarchy of clusters can frequently lead to more accurate solutions, although

a meaningful tree structure will no longer be available for user inspection.

106



5.4 Comparison of Benchmark Validation Methods

We now turn to the problem of cluster validation in document clustering applications. In

this evaluation, we examine the performance of the internal validation techniques described

in Section 3.2. Note that we only consider those that are practical for use on text data,

which are denoted as follows:

CH: Calinski-Harabasz index (3.1)

DI1: Original formulation of Dunn’s index (3.3)

DI2: Centroid-based formulation of Dunn’s index (3.4)

DI3: Formulation of Dunn’s index recommended by Bezdek & Pal (1995) (3.5)

DB: Centroid-based formulation of Davies-Bouldin index (3.6)

CI: C-index (3.7)

SIL: Cosine-based silhouette index (3.11)

BIC: Bayesian Information Criterion (3.15)

Internal validation indices are generally based on the assumption that the metrics used

during validation will correspond to those that were originally employed in the generation

of the clustering under consideration. Therefore, when employing these indices, we use

cosine distance (2.5) as a measure of dissimilarity in place of Euclidean distance. While

we did examine the possibility of using the latter metric in this context, our results re-

flected the findings of Strehl (2002), indicating that its emphasis on absent values makes

Euclidean-based indices unsuitable in this context. However, for the BIC technique, which

is based on the assumption that the clusters have Gaussian distributions where variance is

modelled in terms of object-centroid Euclidean distances, the use of an alternative dissim-

ilarity metric is not appropriate. We therefore use the original formulation of the criterion

as described in Section 3.2.2.

5.4.1 Cluster Evaluation

Internal indices are commonly applied in real-world unsupervised learning tasks, where

they provide a means of comparing multiple clusterings of a given dataset. As mentioned

previously, we regard the external NMI measure as providing a robust measure of clustering

accuracy in cases where class information is available. This external knowledge is assumed

to provide a “gold standard” on which cluster analysis techniques may be evaluated.

Therefore, we now examine the degree of correlation between NMI and the classical internal

107



indices described in Section 3.2.1. Ideally, a high correlation should exist between the

evaluations produced by NMI and those produced with a chosen internal index, indicating

that the latter is successful at identifying clusterings that reflect the underlying classes in

the data. Note that BIC is not included here as it is generally used for the task of model

selection, rather than for cluster evaluation.

To evaluate the correlations, we required a large number of datasets to emphasise the

differences between the various indices. Therefore, we made use of the artificial datasets

derived from the 20NG collection as described in Section 5.2.2. We generated 100 clus-

terings on each of the 84 datasets, applying the NMI and internal validation indices to

the resulting clusterings. For each dataset, we then computed the correlation between

external and internal accuracy scores as given by the Spearman rank coefficient.

A summary of the absolute values of the mean correlations for different categories of ar-

tificial dataset is given in Figure 5.2. The standard formulation of the Dunn’s index (DI1)

and that recommended by Bezdek & Pal (1995) (DI3) frequently performed poorly, par-

ticularly in the presence of overlapping clusters. The technique involving centroid-based

metrics (DI2) fared better, although the Dunn’s index generally appears to represent a

poor choice of validation of text data. The DB-index and C-index techniques achieved

approximately equivalent validation performance, with the former performing better on

balanced clusters, while the latter proving more successful on unbalanced clusters. The

CH-index was noticeably better than either, while the cosine-based silhouette measure

(SIL) proposed in Section 3.2.1 consistently provided the highest level of correlation with

the external NMI index. This suggests that, from the indices considered here, SIL pro-

vides the most useful measure of clustering quality when class information is unavailable.

Furthermore, the consistency of its performance across the various categories suggests that

0

0.2

0.4

0.6

0.8

1

CH DI1 DI2 DI3 DB CI SIL

R
a

n
k
 C

o
rr

e
la

ti
o

n

Balanced
Unbalanced
Non-overlapping
Overlapping

Figure 5.2: Summary of the absolute mean rank correlations between common internal
validation indices and external NMI accuracy, measured across all artificial text datasets.

108



it does not suffer dramatically due to the presence of unbalanced or overlapping classes.

However, it should be noted that the level of correlation for all the indices examined here

is relatively low, indicating that internal indices can frequently fail to recognise clusterings

which successfully uncover the underlying structures in text corpora.

5.4.2 Model Selection

For many document clustering procedures, the most important consideration during pa-

rameter selection is the choice of the number of clusters k. Therefore, we now evaluate

the suitability of popular internal validation techniques for the purpose of estimating the

true number of clusters k̂ in a document collection.

Evaluation on Artificial Data

For our initial set of experiments, we again used the set of artificial datasets constructed

from the 20NG collection. We ran 100 executions of the k-means algorithm with cosine

similarity for each value of k in the range [2, 10], and applied eight internal indices to each

clustering. We subsequently averaged the scores over all runs and compared the rankings

0

20

40

60

80

100

CH DI1 DI2 DI3 DB CI SIL BIC

%
 D

at
as

et
s

Balanced
Unbalanced
Non-overlapping
Overlapping

(a) Correct estimations

0

20

40

60

80

100

CH DI1 DI2 DI3 DB CI SIL BIC

%
 D

at
as

et
s

Balanced
Unbalanced
Non-overlapping
Overlapping

(b) Top-3 estimations

Figure 5.3: Summary of the overall percentage of correct and top-3 estimations for k̂ as
selected by common internal validation indices, measured across all artificial text datasets.

109



produced by the indices with the known number of clusters k̂.

To summarise the results of our experiments, Figure 5.3(a) shows the percentage of

datasets on which each validation index correctly identified k̂, while Figure 5.3(b) shows

the percentage of datasets for which k̂ was selected among the top three choices. These

results indicate that, although the internal indices under consideration have proved pop-

ular and effective for model selection in other domains, the majority of these techniques

perform poorly on text data. Even with the use of an appropriate cosine-based dissimilar-

ity metric in place of Euclidean distance, techniques such as variants of the classical Dunn

and DB indices fail to correctly estimate k̂ on more than 25% of the 84 datasets. There are

two exceptions: the Calinski-Harabasz (CH) index and the Bayesian Information Criterion

(BIC). Both afforded significantly better estimates for the number of clusters, particularly

on datasets containing overlapping groups. Surprisingly, BIC performed well when us-

ing Euclidean distance, while we have generally observed that the other internal indices

perform very poorly when using that metric. It is interesting to note that the cosine-

based silhouette measure (SIL), which exhibited a high level of correlation with external

accuracy in the previous set of experiments, performs poorly in the context of parameter

selection. This suggests that, while certain indices can provide acceptable performance

when choosing between partitions with the same number of clusters, this success may not

translate to the problem of choosing a suitable clustering model. In the case of SIL, this

is due to an inherent bias in the index toward larger values of k, which is also present in

the original formulation proposed by Rousseeuw (1987).

Evaluation on Real Data

For our second evaluation, we compared the eight internal validation schemes on the real-

world corpora described in Section 5.2.1. The experimental setup was identical to that

used for the artificial data. Table 5.7 summarises the top three estimations produced by

the indices on each corpus, where highlighted values indicate cases where k̂ was correctly

identified. Once again, we observe that the classical CH index generally proved most suc-

cessful in correctly estimating the number of clusters. Notably, it was the only technique to

provide useful recommendations for the sports dataset, which contains highly unbalanced

clusters. In contrast to the results produced on artificial data, in this set of experiments

the BIC technique generally lead to the poorest results of all those techniques considered.

This was particularly evident on the larger datasets, suggesting that the performance of

110



Dataset k̂ CH DI1 DI2 DI3 DB CI SIL BIC
bbc 5 5,6,4 5,2,4 5,4,6 5,6,7 5,6,4 6,7,5 5,6,7 6,7,5
bbcsport 5 6,5,7 4,3,5 4,6,5 6,5,4 6,7,5 8,7,6 6,7,8 5,3,4
classic 4 3,4,5 3,2,4 2,3,4 3,4,2 3,2,4 2,3,4 2,3,4 10,9,8
classic3 3 3,4,2 2,3,4 3,2,4 3,2,9 3,2,4 3,2,4 3,2,4 8,9,7
cstr 4 3,4,5 3,2,4 2,3,4 10,9,8 3,2,10 3,4,2 3,2,4 3,2,4
ng17-19 3 5,6,4 2,3,4 4,3,5 9,5,7 10,9,8 2,3,4 9,8,10 7,6,5
ng3 3 3,4,5 3,2,4 3,2,4 3,4,5 3,4,2 3,2,4 3,4,2 6,5,4
reuters5 5 2,3,4 2,3,4 2,3,4 3,2,4 2,3,4 2,3,4 2,3,4 10,9,8
reviews 5 2,3,4 2,3,4 2,3,6 2,3,4 2,7,8 2,9,7 2,3,4 10,9,8
sports 7 6,7,5 2,3,4 2,3,6 2,3,4 10,8,9 2,3,6 2,3,6 10,9,8

Table 5.7: Summary of the top-3 estimations for k̂ as selected by common internal
validation indices when applied to clusterings of real-world text datasets.

the BIC formulation proposed by Pelleg & Moore (2000) is biased with respect to the

number of documents n. For larger values of n, BIC frequently over-estimates the number

of clusters, which corroborates the experimental observations made by Hamerly & Elkan

(2004).

5.4.3 Summary

Our experiments show that the related tasks of evaluating clustering solutions and choos-

ing suitable models for clustering can be difficult to perform successfully when working

with text corpora due to the complex nature of the data. It is apparent that many inter-

nal validation technique, such as the well-known indices proposed by Dunn (1974b) and

Davies & Bouldin (1979), are ill-suited to assessing the validity of clusterings of text data,

particularly in cases where the cluster structures are non-spherical or overlapping. For

the task of estimating the optimal number of clusters k̂, the popular model-based BIC

technique performed well on artificial data, although it proved less successful on larger

real-world corpora. The index described by Calinski & Harabasz (1974), adapted to use

squared cosine distance, was best suited for this task, when considering both artificial and

real datasets. Therefore, we use this index as a baseline for validation performance in the

remainder of this thesis.

The experimental results presented here indicate that there is significant scope for im-

proving the techniques available for model selection in document clustering. It should also

be noted that, while our validation experiments are based on averaging index scores across

111



a large number of runs, it is common practice to estimate k̂ based on a single clustering

for each potential value of k (Bolshakova & Azuaje, 2002). This can lead to estimations

that are far less robust and highly sensitive to any instabilities introduced by the under-

lying clustering algorithm. To address these shortcomings, in Section 7.2 we introduce an

alternative approach for performing model selection, based on the aggregation of multiple

clusterings, which is robust to the presence of outlying documents and overlapping clusters

that differ in structure.

112



Chapter 6

Improving Accuracy and

Interpretability

6.1 Introduction

Experimental evaluations have shown that the accuracy afforded by many popular doc-

ument clustering algorithms can vary significantly, depending on the complexity of the

cluster structures in the data to which they are applied. In Section 6.2, we introduce

novel approaches designed to improve the accuracy of recently proposed clustering algo-

rithms when working with text data, specifically those based on spectral analysis and

non-negative matrix factorisation. Many existing document clustering techniques do not

address the problem of presenting a newly generated clustering to a user in an interpret-

able manner. To facilitate the extraction of knowledge from clusterings of text corpora,

strategies are proposed for generating readily interpretable summary information, in the

form of descriptive and discriminative cluster labels.

In Section 6.3, we shift our focus to improving the performance of recently-proposed

kernel learning methods. We examine the phenomenon of diagonal dominance, which can

significantly impact upon the accuracy and stability of popular centroid-based algorithms.

This phenomenon especially problematic when kernel functions are applied to sparse high-

dimensional data, such as text corpora. We explore the implications of diagonal dominance

for kernel document clustering tasks, and propose a selection of strategies for reducing

these effects, thereby leading to increased clustering accuracy and stability.

113



6.2 Producing Accurate Interpretable Clusters

A fundamental goal of document clustering is the identification of a set of groups that ac-

curately reflects the topics present in a corpus. A second objective that is often overlooked

is the provision of information to facilitate the human interpretation of the clustering so-

lution. The application of dimension reduction techniques in document clustering has

largely focused on improving algorithm accuracy and scalability. However, from a user’s

perspective, the production of concise, unambiguous descriptions of cluster content is also

highly important. A simple but effective means of achieving this goal is to generate weights

signifying the relevance of the terms in the corpus vocabulary to each cluster, from which

a set of cluster labels can subsequently be derived. The provision of document member-

ship weights can also help a user to gain an insight into a given clustering solution. For

instance, when a document is assigned to a cluster, it may be useful to quantify the con-

fidence of this assignment. These weights also allow us to represent cases where a given

document relates to more than one topic.

In this section, we introduce a family of co-clustering algorithms which are motivated

by the spectral analysis techniques described in Section 2.6. These algorithms provide

membership weights for both terms and documents in the form of a soft co-clustering

of the data. Furthermore, by applying an iterative matrix factorisation scheme, we can

produce a refined clustering that affords improved accuracy and interpretability. We also

examine a kernel-based approach, which can produce co-clusterings based on the use of

an arbitrary affinity metric. The proposed algorithms are compared to existing matrix

decomposition methods on a range of real-world datasets. Strategies for generating useful

cluster descriptions in conjunction with these algorithms are also presented.

6.2.1 Soft Spectral Clustering

Spectral clustering algorithms have focused on the production of hard clusterings, where

it is assumed that the matrix representation of a dataset can be organised in a block-

diagonal fashion, such that the blocks correspond to a set of well-defined disjoint classes.

In contrast, for text corpora it is not unusual for a single document to relate to more than

one topic, resulting in overlapping classes. Given a term-document matrix A ∈ IRm×n,

we now examine the problem of inducing membership weights from a hard clustering, and

propose an intuitive method to produce soft clusters based on the spectral co-clustering

114



model introduced by Dhillon (2001).

Related Techniques

A common approach for the task of generating feature weights from a hard clustering is

to examine the cluster centroid vectors, which can be viewed as providing a summary of

the content of each cluster (Karypis & Han, 2000). In the spherical k-means algorithm

(Dhillon & Modha, 2001), term weights are extracted from the unit normalised centroid of

each cluster. Unfortunately, an analogous technique for spectral clustering is not feasible

due to the presence of negative values in centroid vectors, which is a consequence of

using eigenvectors to form the dimensions of the spectral embedding. Another possible

approach is to consider the membership weights of a given document as being a function

of the similarity between the document and each cluster centroid (Zhao & Karypis, 2004).

Documents that are highly similar to a particular cluster centroid will be assigned a high

membership weight for that cluster, whereas documents that bear little similarity to the

centroid will be assigned a low weight. In the case of a co-clustering, we can also derive

term membership weights using an analogous approach.

The success of spectral clustering methods has been attributed to the construction

of an embedding from a truncated set of eigenvectors. When applied to text data, this

has the effect of amplifying the association between documents that are highly similar,

while simultaneously attenuating the association between documents that are dissimilar

(Brand & Huang, 2003). However, while this process has been shown to improve the

ability of a post-processing algorithm to identify cohesive clusters, the truncation of the

decomposition of A to k � m singular vectors introduces a distortion that makes the

extraction of natural membership weights problematic. As a consequence, we observe

that directly employing embedded term-centroid similarity values as membership weights

will not provide intuitive cluster labels.

As an alternative to inducing soft weights from a hard partition, one may advocate

the application of existing fuzzy clustering techniques. An analogous approach to spectral

k-means clustering would involve the application of the fuzzy c-means algorithm (Bezdek,

1981). However, its effectiveness as a post-processing method for spectral document clus-

tering is limited due to its reliance on a squared-norm metric to measure similarity and its

inability to deal with outliers. The membership values produced by a fuzzy co-clustering

of a spectral embedding will also be subject to the effects of the distortion described above.

115



Motivated by these factors, we focus on the problem of deriving soft membership weights

from a hard clustering.

Inducing Soft Clusters

As a starting point, we construct a spectral embedding using the bipartite co-clustering

approach described in Section 2.6.4. However, we form an embedding from k leading

singular vectors rather than log2 k, as recent work has shown that truncating the eigenbasis

to a smaller number of dimensions may negatively affect clustering accuracy and stability

(Ng et al., 2001). Once we have constructed the embedding Z ∈ IR(m+n)×k, we produce

a disjoint k-way clustering of the row vectors by applying the k-means algorithm with

cosine similarity. This clustering can be represented as the (m + n) × k partition matrix

P, where the i-th column is a binary membership indicator for the i-th cluster.

Since the spectral co-clustering strategy is based on the principle of the duality of clus-

tering documents and terms (Dhillon, 2001), we argue that we can induce a soft clustering

of terms from the partition of documents in Z, while a soft clustering of documents from

the partition of terms. Observe that the matrix P has the following structure:

P =

 P1

P2


The m× k sub-matrix P1 indicates the assignments of terms to clusters, while the n× k

sub-matrix P2 indicates the assignment of documents. An intuitive approach to producing

term weights is to apply the transformation AP̂2, where P̂2 denotes the matrix P2 with

columns normalised to unit length. This effectively projects the centroids of the partition

of documents in Z to the original feature space. Similarly, we can compute document

weights by applying the transformation A
T
P̂1, thereby projecting the embedded term

cluster centroids to the original data.

We observe that, due to the “winner takes all” nature of the k-means algorithm,

membership weights derived using the above approach will not reflect the existence of

boundary objects lying between clusters or outliers that may be equally distant from all

centroids. To overcome this problem, we propose projecting the centroid-similarity values

from the embedded clustering to the original data. Due to the presence of negative values

in Z, these values will lie in the range [−1, 1]. We rescale the values to the interval [0, 1] and

normalise the k columns to unit length, representing them by the matrix S ∈ IR(m+n)×k

116



as defined by:

Sij =
1 + cos(zi, cj)

2
Sij ←

Sij∑
l Slj

(6.1)

As with the partition matrix P of the embedded clustering, the centroid-similarity matrix

S can be divided into two sub-matrices

S =

 S1

S2


where S1 ∈ IRm×k corresponds to the term-centroid similarity matrix and S2 ∈ IRn×k

is the document-centroid similarity matrix. By applying the projections AS2 and A
T
S1

respectively, we can generate membership weights that consider both the affinity between

vectors in the embedded space and the term frequency values from the original term space.

Soft Spectral Co-clustering (SSC) Algorithm

Motivated by the duality of the co-clustering model, we now present a spectral clustering

algorithm with soft assignment of terms and documents that employs a combination of the

transformation methods described in the previous section. We formulate the output of the

algorithm as a pair of matrices (U,V), where U represents the term-cluster membership

function and V represents the document-cluster membership function.

As an appropriate document membership function, we select the projection A
T
S1 on

the basis that the use of similarity values extracts more information from the embedded

clustering than purely considering the binary values in P. We observe that this generally

leads to a more accurate clustering, particularly on datasets consisting of overlapping

classes.

The requirements for a term membership function differ considerably from those of

a document membership function, where accuracy is the primary consideration. As the

production of useful cluster descriptions is a central objective of our work, we seek to

generate a set of weights that results in the assignment of high values to relevant features

and low values to irrelevant features. Consequently, we select the projection AP̂2 as pre-

vious work has shown that centroid vectors can provide a summarisation of the important

concepts present in a cluster (Dhillon & Modha, 2001). Our choice is also motivated by

the observation that the binary indicators in P̂2 result in sparse discriminative weight

vectors, whereas the projection based on S2 leads to term weights such that the highest

ranking words tend to be highly similar across all clusters.

117



1. Construct the normalised term-document matrix:

An = D1
− 1

2 AD2
− 1

2

2. Compute the k leading singular vectors of An to produce the truncated factors
Uk = (u1, . . . , uk) and Vk = (v1, . . . , vk).

3. Construct the embedding Z by scaling and stacking Uk and Vk:

Z =
[

D1
−1/2Uk

D2
−1/2Vk

]

4. Apply k-means with scaled cosine similarity and orthogonal initialisation to the
embedding Z to generate a disjoint co-clustering.

5. Construct matrices S1 and P̂1 from the co-clustering.

6. Form soft clusters by applying the projections U = AP̂2 and V = A
T
S1.

Figure 6.1: Soft Spectral Co-clustering (SSC) algorithm.

The traditional approach for initialising k-means in the post-processing phase of spec-

tral clustering is to randomly divide the embedded data into k groups. While clustering

based on an appropriate number of singular vectors should produce robust results, we have

observed that, for larger datasets, stochastic initialisation can still lead to inconsistent so-

lutions. To avoid this behaviour, we generate initial clusters in a manner modelled on the

furthest-first scheme described in Section 2.3.3. Specifically, the first cluster centroid is

nominated as the most centrally located point in the embedded space. Each successive

centroid is chosen to be as close as possible to 90o from those that have been previously

selected. After k centroids have been selected, the remaining objects are assigned to the

nearest centroid in the embedding. In this way a fully deterministic solution may be

produced. The complete procedure, designated as the Soft Spectral Co-clustering (SSC)

algorithm, is summarised in Figure 6.1.

6.2.2 Refined Soft Spectral Clustering

We now present an approach to document clustering that builds upon the co-clustering

techniques described previously to produce a refined clustering that affords improved ac-

curacy, while retaining the interpretability of the clusters. As discussed in Section 2.6, the

dimensions of the embedded space produced by spectral decomposition are constrained to

118



be orthogonal. However, as text corpora will typically contain documents that pertain to

multiple topics, the underlying semantic variables in the data will rarely be orthogonal.

The limitations of spectral techniques to effectively identify overlapping clusters has moti-

vated the introduction of other dimension reduction techniques such as NMF, where each

document may be represented as the additive combination of the topics. Unfortunately,

the standard NMF approach, which involves initialising a pair of factors with random

positive values, can lead to convergence to a range of solutions of varying quality.

We argue that initial factors, produced using the soft cluster induction techniques

discussed previously, can provide a good set of well-separated “core clusters”. By subse-

quently applying matrix factorisation with non-negativity constraints to the corresponding

membership matrices, we can effectively uncover overlaps between clusters. The combi-

nation of the global information available to spectral techniques with the local nature of

iterative matrix factorisation methods can yield accuracy superior to that achieved by

either of the individual approaches. In addition, the relative sparsity of the factors pro-

duced by NMF improves our ability to identify outlying documents and eliminate irrelevant

terms.

Refined Soft Spectral Co-clustering (RSSC) Algorithm

We now describe a procedure to refine the output of methods based on the soft spectral co-

clustering model. In the SSC algorithm described previously, our choice of projection for

the construction of the term membership matrix was motivated by the desire to produce

weights for subsequent use in producing cluster labels. However, the projection AS2

retains additional information from the embedded clustering, in the form of the set of n×k

normalised similarity values, while simultaneously considering the actual term frequencies

in A. Consequently, we apply soft spectral co-clustering as described previously, but select

V = A
T
S1 and U = AS2 as our initial pair of factors.

We refine the weights in U and V by iteratively updating these factors in order to min-

imise the divergence between the original term-document matrix A and the approximation

UV
T
, as quantified by:

D(A||UV
T
) =

m∑
i=1

n∑
j=1

(
Aij log

Aij

[UVT ]ij
−Aij + [UV

T
]ij

)
(6.2)

This is equivalent to the Kullback-Leibler loss function given in 2.27, with a change of

notation such that W ≡ U and H ≡ V
T
. To compute the factors, we apply a pair of

119



1. Compute decomposition of An, construct k-dimensional embedding Z and apply
k-means as described in SSC algorithm.

2. Construct matrices S1 and S2 from the resulting co-clustering.

3. Generate initial factors U = AS2 and V = A
T
S1.

4. Update V using the rule

vij ← vij

[(
Aij

[UVT ]ij

)
TU
]

ij

(6.3)

5. Update U using the rule

uij ← uij

[
Aij

[UVT ]ij
V
]

ij

uij ← uij
Uij∑m
l=1 Ulj

(6.4)

6. Repeat from step 4 until convergence.

Figure 6.2: Refined Soft Spectral Co-clustering (RSSC) algorithm.

multiplicative update rules as described by Lee & Seung (1999). The complete Refined

Soft Spectral Co-clustering (RSSC) algorithm is summarised in Figure 6.2.

6.2.3 Kernel-Based Soft Spectral Clustering

The techniques previously described in this section involve modelling a corpus using a

bipartite graph. However, recent spectral clustering methods that make use of the eigen-

decomposition of a symmetric affinity matrix have often been shown to produce accurate

clusterings (Yu & Shi, 2003). Other advantages of these methods, when compared with

those working directly on a term-document matrix A, include a decrease in storage over-

head and the ability to make use of an arbitrary kernel function κ to construct a matrix.

However, these methods have been designed to produce a hard clustering of documents

without the provision of soft membership weights or explicit cluster descriptions. We now

introduce a kernel-based technique, analogous to the SSC algorithm, which produces a

highly accurate soft co-clustering and meaningful cluster labels.

As with the bipartite approaches, we attempt to minimise the normalised cut of a

graph representation of the data. Rather than working on the original vector space model

represented by A, our aim is to derive a k-way partition of the weighted unipartite graph

encoded in the form of a kernel matrix K. To produce an approximation to the optimal

120



cut of this graph, we begin by constructing the degree-normalised matrix:

Kn = D− 1
2 SD− 1

2 (6.5)

We subsequently set the diagonal values of the matrix to zero as suggested by Ng et al.

(2001), since we also observe that reducing self-similarity prior to decomposition often

leads to an increase in clustering accuracy. A low-dimensional embedding X̂ ∈ IRn×k

is formed from the eigenvectors corresponding to the k leading eigenvalues, which are

normalised to L2 unit length. The k-means algorithm with cosine similarity is then applied

to produce a clustering of the rows in X̂. As with SSC, we observe that the use of

orthogonal initialisation provides a deterministic means of producing a good set of initial

clusters. This embedded clustering, which consists of a grouping of documents only, may

be represented by a n × k binary partition matrix P. The application of L1 column

normalisation to this matrix provides equal weighting to each cluster, resulting in a matrix

P̂. As with the techniques described previously in this section, we produce a soft-clustering

by applying two projections to map the embedded partition to the original space. In this

case, the mapping of documents is based on the use of the degree-normalised kernel matrix

Kn, which leads to empirical results that are superior to those achieved when using the

original kernel matrix K. Specifically, we compute a document membership weight matrix

V ∈ IRn×k by computing the projection V = KnP̂. The entry Vij represents the mean

affinity between xi and the documents assigned to Cj :

Vij =

∑
xl∈Cj

Knil

|Cj |
(6.6)

1. Construct the normalised kernel matrix Kn = D− 1
2 KD− 1

2 , and set the diagonal
entries [Kn]ii = 0.

2. Compute the k leading eigenvectors of Kn to form the k-dimensional embedding X.

3. Apply L2-normalisation to the rows of X to produce X̂.

4. Apply k-means with cosine similarity and orthogonal initialisation to the embedding
X̂ to generate a hard clustering CH .

5. Construct the normalised partition matrix P̂ from the clustering CH .

6. Form soft clusters by applying the projections V = KnP̂ and U = AP̂.

Figure 6.3: Kernel-based Soft Spectral Co-clustering (KSSC) algorithm.

121



To produce term membership weights, it is necessary refer back to the frequency values in

the original term-document matrix A. We apply a projection similar to that used in the

SSC algorithm, where feature membership weights are induced from the partition matrix

of the clustering of documents. In this case, we construct the matrix U ∈ IRm×k, such

that U = AP̂. The pair (U,V) may now be interpreted as a soft co-clustering of the data,

where highest weighted terms in the columns of V provides us with labels describing the

content of the k clusters. The full procedure is summarised in Figure 6.3.

6.2.4 Experimental Evaluation

In this section, we compare the accuracy afforded by the newly proposed spectral clustering

algorithms with that achieved by three popular benchmark algorithms, which are also

based on matrix decomposition methods:

BCC: Bipartite spectral co-clustering with orthogonal initialisation (Dhillon,

2001), using k singular vectors.

NJW: Ng-Jordan-Weiss k-way spectral clustering (Ng et al., 2001).

NMF: NMF with the KL-divergence objective function and random initialisation

(Lee & Seung, 1999)

While the NJW and KSSC algorithms support the use of an arbitrary kernel function,

for document clustering we use a normalised linear kernel as defined in Eqn. 2.36. In

our experiments, we select a value for the number of clusters k corresponding to the

number of natural classes k̂. Clustering accuracy is measured using the external NMI

index. When evaluating the non-deterministic NMF and NJW algorithms, we calculate

the average accuracy over 100 runs of the clustering algorithm. Since NMI is applied to

hard clusterings, for the algorithms generating soft clusterings we produce hard clusters

from the membership matrix V by assigning each document xi to the cluster Cj such that

j = arg max
j

Vij .

Comparison of Clustering Accuracy

Table 6.1 summarises the NMI scores for the six clustering algorithm under consideration,

with standard deviations supplied for those that are non-deterministic. The accuracy of the

clusterings produced by the SSC algorithm was roughly comparable to that afforded by the

bipartite spectral co-clustering method (BCC). By virtue of their ability to work with non-

122



Dataset NMF NJW BCC SSC RSSC KSSC
bbc 0.77 ± 0.09 0.84 ± 0.04 0.69 0.65 0.84 0.89
bbcsport 0.61 ± 0.09 0.79 ± 0.04 0.64 0.64 0.75 0.87
classic 0.73 ± 0.06 0.73 ± 0.02 0.69 0.73 0.84 0.76
classic3 0.93 ± 0.06 0.93 ± 0.01 0.65 0.62 0.93 0.95
cstr 0.67 ± 0.06 0.74 ± 0.03 0.80 0.79 0.76 0.79
ng17-19 0.30 ± 0.11 0.29 ± 0.01 0.14 0.20 0.40 0.44
ng3 0.79 ± 0.13 0.56 ± 0.05 0.14 0.37 0.89 0.61
reuters5 0.55 ± 0.03 0.63 ± 0.03 0.59 0.62 0.57 0.65
reviews 0.49 ± 0.04 0.57 ± 0.02 0.40 0.41 0.54 0.53
sports 0.52 ± 0.06 0.60 ± 0.03 0.48 0.52 0.56 0.70

Table 6.1: Summary of NMI accuracy results for clustering methods based on matrix
decomposition, when applied to real-world text datasets.

orthogonal basis vectors, both the NMF and RSSC methods produced clusterings that were

often superior to those generated using bipartite methods. However, the RSSC algorithm’s

use of spectral information to seed well-separated “core clusters” for subsequent refinement

leads to a higher level of accuracy on most datasets. We did observe that the NMF and

NJW methods exhibit considerable instability, with randomly-initialised NMF particularly

resulting in solutions that varied greatly in terms of the clustering accuracy. In contrast,

the deterministic nature of the orthogonal initialisation strategy employed by the newly

proposed algorithms leads to a single definitive solution. The techniques based on the use

of a normalised affinity matrix were frequently superior to those operating on the original

term-document matrix, with the KSSC algorithm producing the most accurate solutions

on the majority of the datasets. These results are generally significantly better than those

afforded by the classical algorithms evaluated in Section 5.3. Only our proposed variation

of min-max agglomerative hierarchical clustering with k-means refinement lead to higher

accuracy on certain datasets, although KSSC was more consistent when considering all

the corpora.

Comparison of Algorithm Efficiency

For the spectral clustering methods described in this chapter, we employ the implementa-

tion of the Implicitly Restarted Lanczos Method (Lehoucq et al., 1997) provided by TCT.

This makes the computation of a small number of leading eigenvectors or singular vectors

far more efficient. For instance, the time required to compute the truncated SVD for a

123



term-document matrix A of size m × n is reduced from O(m2n) to O(zmn), where z is

the average number of non-zero entries in each sparse document vector.

In our experiments we observed that, when applying k-means to a spectral embedding,

very few iterations are typically required before convergence is achieved. In contrast, due

to the slow convergence and computational cost resulting from the repeated application of

multiplicative update rules, the NMF and RSSC algorithms exhibited much longer running

times. While efficiency may be improved somewhat by using sparse matrix multiplication

techniques, we suggest that, for larger text datasets, the KSSC method provides a more

pragmatic choice for producing accurate clusterings.

6.2.5 Generating Cluster Labels

Once term membership weights have been produced by a soft co-clustering algorithm,

an intuitive approach for generating human-readable cluster labels is to select the set of

h terms which have the highest values from each column of the matrix U (i.e. top-rank

selection). This results in labels that are descriptive, in the sense that they provide a

summary of the content of each cluster. However, it may occur that certain terms will be

selected as labels for multiple clusters, or that the set of chosen terms will be relatively

generic in nature, consisting of words that are not necessarily topic-specific. In such cases,

it may be more appropriate to generate cluster labels based on the most discriminative

terms, which are less ambiguous and serve to highlight the distinctions between clusters.

To select discriminative cluster labels, we propose the application of techniques such

as those use in classification tasks. We observe that the selection of discriminative terms

based on a fixed set of clusters is closely related to the task of feature selection in classifi-

cation tasks, where the goal is to identify a subset of features that will improve the ability

of a classifier to distinguish between several predefined classes. Thus, many well-known

feature selection methods, which have previously been applied in text classification, are

relevant in this context. While a variety of options exist for this task, we propose labelling

based on two criteria that have been particularly prevalent in the literature:

Information gain (IGAIN): To directly produce discriminative labels from a soft co-

clustering such as that produced by KSSC, we suggest the application of a weighting

scheme based on information gain (Yang & Pedersen, 1997) to the term membership

matrix U, which measures the number of bits of information obtained to distinguish

124



between the clusters based on a low or high value in U for a given term. Formally,

the weight for the i-th term in the cluster Cj is calculated as

Wij = Eij −
1
k

k∑
l=1

Eil (6.7)

where the entropy Eij is given by

Eij = −Uij log2 Uij − (1− Uij) log2(1− Uij) (6.8)

A labelling for the cluster Cj may subsequently be found by selecting the h terms

with the highest weights in the j-th column of W.

χ2 measure (CHI): The Chi-square test has been frequently applied in text classifica-

tion to measure the level of association between a term and a set of categories. We

suggest that, given a hard clustering, the measure may also be used to identify terms

that occur frequently in one cluster but seldom in other clusters. Formally, given

the i-th term ti and the cluster Cj , let aij denote the number of documents in the

cluster that contain ti and let bij denote the number of documents assigned to other

clusters that also contain ti. In addition, let cij denote the number of documents

in Cj that do not contain ti, and let dij denote the number of documents in other

clusters that do not contain ti. A matrix W ∈ IRm×k of term weights is computed

based on the standard χ2 formula:

Wij =
n · (aijdij − cijbij)2

(aij + cij) · (bij + dij) · (aij + bij) · (cij + dij)
(6.9)

Once again, after computing W, cluster labels are generated by choosing the highest

ranked terms in each column of the matrix.

Note that this technique is suitable for use in conjunction with any hard clustering

algorithm. For techniques such as KSSC, disjoint membership values are found

by temporarily assigning each object to the cluster for which it has the highest

membership weight in V.

To illustrate the effect of applying these techniques, tables 6.2 and 6.3 respectively

provide a list of labels selected for clusters produced by the KSSC algorithm on the bbc

and bbcsport corpora. We see that all three labelling methods provide meaningful cluster

descriptions. It is interesting to note that these annotations clearly reflect some of the

major news events from the period in which the datasets where constructed, including the

125



Original Information Gain Chi Square

C1

company share growth market growth oil
year bank bank oil analyst company
market economy economy price market profit
firm sale profit company bank investor
growth price share analyst economy firm

C2

Labour Blair Labour minister Labour party
elect tory elect government tory government
government plan party MP elect secretary
party people tory prime minister MP
minister MP Blair Conservative Blair Conservative

C3

film year film oscar star nomination
award show award singer film actress
star include star album award comedy
best actor actor band actor oscar
music nomination nomination best singer album

C4

game against match injury coach win
play champion cup game game injury
win team win player match player
player cup champion play champion championship
match England coach team cup season

C5

people mobile user digital user online
technology phone technology phone technology download
user software computer net computer internet
computer digital software online digital device
service firm mobile internet software PC

Table 6.2: Labels for a clustering of the bbc corpus. Terms were selected using three
different strategies: top-rank selection, information gain selection, and χ2 selection.

2004 Athens Olympics, the 2005 British general election and the 2005 Academy Awards

ceremony. However, we observe that using the original term weights leads to more generic

labels. For instance, consider the generation of a label for the cluster C1 on the bbcsport

corpus. While this cluster primarily consists of articles relating to ‘rugby’, the terms

‘against’, ‘play’ and ‘game’ are chosen, which could also pertain to any of the other topics

in the corpus. In contrast, the IGAIN and CHI methods choose more specific terms such

as ‘lions’ or ‘fly-half’. These trends are reflected to varying degrees across all datasets.

The CHI method exhibits a particular tendency to choose highly discriminative labels. In

general, we observed that the production of intelligible cluster labels was closely related to

clustering accuracy. Notably, the labels produced in conjunction with KSSC were generally

more meaningful than those produced by the other algorithms due to the greater accuracy

afforded by that algorithm.

126



Original Information Gain Chi Square

C1

England game rugby Robinson rugby fly-half
rugby six Wales England nation Robinson
Ireland against Ireland France Ireland six
nation coach nation six Wales France
Wales play Scotland lions Scotland flanker

C2

Olympics Athens Olympics drug Olympics gold
athlete European athlete European athlete trial
race year indoor gold Athens 200m
indoor champion race IAAF indoor drug
world drug Athens medal sprinter race

C3

open Australian seed 7-6 seed 7-5
seed set open tennis 6-3 7-6
play first 6-3 7-5 tennis Wimbledon
win final 6-4 Roddick open 6-1
match 6-3 Australian 6-1 6-4 Australian

C4

club play Chelsea football Chelsea Manchester
Chelsea game club boss Arsenal football
player united Arsenal Manchester league FA
league football league manager boss manager
Arsenal manager united Liverpool club united

C5

test Pakistan cricket India cricket series
cricket wicket one-day test wicket batsman
series India Pakistan bowl one-day bat
one-day Australia wicket bowler bowler Pakistan
play first series Australia bowl over

Table 6.3: Labels for a clustering of the bbcsport corpus. Terms were selected using three
different strategies: top-rank selection, information gain selection, and χ2 selection.

6.2.6 Summary

In this section, we described methods based on spectral analysis that can yield accurate,

interpretable co-clusterings on high-dimensional text datasets. We examined the idea of

using spectral clustering to provide a good initial start point for non-negative matrix

factorisation, which can often produce poor, unstable results when standard stochastic

initialisation techniques are employed. Section 6.2.3 described a kernel-based approach,

the KSSC algorithm, which frequently out-performs popular clustering methods based

on matrix decomposition. Evaluations conducted on real-world text corpora demonstrate

that these methods can lead to the improved identification of overlapping clusters, while

simultaneously producing document and term weights that are amenable to human in-

terpretation. Furthermore, we proposed that highly discriminative cluster labels can be

generated by applying supervised feature selection measures to the output of document

clustering algorithms. While we have specifically considered the information gain and χ2

measures, we suggest that other similar selection methods may also prove useful.

127



6.3 Practical Solutions for Diagonal Dominance Reduction

We now shift our focus to the state-of-the-art kernel learning methods introduced in Sec-

tion 2.8. These methods are composed of two key components: a generic learning algo-

rithm, and a kernel function which assesses the similarity between objects in the kernel

space. In many domains, it will often be the case that the average similarity of one object

to another will be small when compared to the “self-similarity” of the object to itself. This

characteristic of many popular kernel functions has proved to be problematic for super-

vised kernel methods (Schölkopf et al., 2002). If, for a given kernel function, self-similarity

values are large relative to between-object similarities, the Gram matrix of this kernel will

exhibit diagonal dominance, which can significantly impair the accuracy of a classifier.

In the remainder of this chapter, we examine the implications of this phenomenon for

document clustering when employing centroid-based kernel methods. We then propose a

number of practical strategies for addressing this problem, and evaluate their ability to

generate more accurate and stable clustering solutions on text data.

6.3.1 Dominant Diagonals in Supervised Learning

It has been observed that the performance of the SVM classifier can be poor in cases

where the diagonal values of the Gram matrix are large relative to the off-diagonal values

(Cancedda et al., 2003; Schölkopf et al., 2002). This problem, sometimes referred to as

diagonal dominance in machine learning literature, frequently occurs when certain kernel

functions are applied to data that is sparse and high-dimensional in its explicit repre-

sentation. This phenomenon is particularly evident in text mining tasks, where linear or

string kernels can often produce diagonally dominated Gram matrices. However, it can

also arise with other kernel functions, such as when employing the Gaussian kernel with

a small smoothing parameter, or when using domain-specific kernels for learning tasks

in image retrieval (Tao et al., 2004) and bioinformatics (Saigo et al., 2004). These cases

are all characterised by the tendency of the mean of the diagonal entries of the kernel

matrix K to be significantly larger than the mean of the off-diagonal entries, resulting in

a dominance ratio:
1
n

∑
i Kii

1
n(n−1)

∑
i,j,i 6=j Kij

� 1 (6.10)

We can interpret this to mean that the set of data objects are approximately orthogonal

to one another in the kernel space. In many cases, a classifier applied to such a matrix

128



will effectively memorise the training data, resulting in severe overfitting (Schölkopf et al.,

2002).

An unfortunate characteristic of this problem is that matrices which are strongly di-

agonally dominated will be positive semi-definite and measures to reduce this dominance

run the risk of rendering a matrix indefinite, so that it no longer represents a valid Mercer

kernel. Consequently, there is a tension between diagonal dominance on the one hand and

the requirement that the matrix be positive semi-definite on the other.

6.3.2 Dominant Diagonals in Kernel Clustering

The phenomenon of diagonal dominance also has implications for centroid-based kernel

clustering methods, such as the kernel k-means algorithm described in Section 2.8.1. Ob-

serve that, when calculating the square distance between a centroid µa and a document

xi ∈ Ca, Eqn. 2.32 can be separated as follows:

||φ(xi)− µc||2 = Kii +

∑
xj ,xl∈Ca

Kjl

|Ca|2
−

2
∑

xj∈Ca−{xi} Kij

|Ca|
− 2Kii

|Ca|
(6.11)

If K is diagonally dominated, the last term in the above expression will be large. This

has the effect that xi will appear to be close to the centroid of Ca and distant from

the remaining clusters, regardless of the affinity between xi and the other documents

assigned to Ca. Consequently, even with random cluster initialisation, few subsequent

reassignments will be made and the algorithm will converge to a poor local solution.

The problem of dominant self-similarity has previously been shown to adversely affect

centroid-based clustering algorithms in high-dimensional feature spaces (Dhillon et al.,

2002a). Therefore, it is unsurprising that similar problems should arise when applying their

kernel-based counterparts using kernel functions that preserve this sparsity. Dhillon et al.

(2004a) observed that the effectiveness of kernel k-means can be significantly impaired

when document-cluster distances are dominated by self-similarity values.

A normalised linear kernel (2.36) represents an intuitive choice when working with

text data, due to its equivalence to the cosine metric (2.4). However, a matrix constructed

using this function will typically suffer from diagonal dominance due to the sparsity of the

vector space representation for real-world text datasets. Thus, while we will always have

Sii = 1∀i, it will often be the case for sparse text data that Sij � 1 for i 6= j. When

applying kernel k-means using such a matrix, the large diagonal entries may prevent the

identification of coherent clusters. Often incorrect assignments in an initial clustering

129



Figure 6.4: A normalised linear kernel matrix constructed on a subset of 90 documents
from the classic3 dataset, which exhibits diagonal dominance.

solution will fail to be subsequently rectified, since large self-similarity values may obscure

similarities between pairs of documents belonging to the same natural class.

To illustrate this problem, we consider a small subset of the frequently used classic3

dataset, which contains three relatively well-separated natural classes. From each class,

we randomly sample 30 documents, resulting in a 1203× 30 term-document matrix, such

that 7% of the entries are non-zero. When constructing a normalised linear kernel on this

data, the affinity values in the matrix reflect the reasonably well-separated nature of the

original classes: the mean affinity between documents is 0.06, the mean affinity between

documents in the same class is 0.11, while the mean affinity between documents belonging

to different classes is 0.03. As in all cases where this kernel is employed, the mean self-

similarity value is 1.0. Due to the separation between classes and small size of the dataset,

we would expect to identify the three groups in the data with relative ease. However, the

sparsity of the original high-dimensional space leads to pairwise affinity values that are

small relative to very low relative to the self-similarity values. As a result, the matrix

exhibits significant diagonal dominance, which is evident from Figure 6.4. When applying

kernel k-means using this kernel over 1000 runs, we observe that the algorithm frequently

terminates prematurely. In fact, 55% of the algorithm executions ended after four or less

iterations. Consequently, the accuracy of the partitions generated was poor, with a mean

NMI score of 0.11 indicating that they were usually little better than random. In addition,

the average agreement between each pair of clusterings, measured using ANMI, was only

0.04, indicating that the output of the algorithm was highly unstable. This simple example

clearly shows that, when employing kernel k-means on sparse data, dominant self-similarity

values can often prevent the identification of the natural classes, even for small datasets

130



containing well-separated structures. While this example represents a pathological case,

the experimental evaluation presented in Section 6.3.5 indicates that diagonal dominance

can similarly affect larger, more complex datasets.

6.3.3 Reducing Diagonal Dominance

We now present four practical strategies for addressing the issues raised by diagonal dom-

inance in centroid-based kernel clustering.

Diagonal Shift (DS)

To reduce the influence of large diagonal values, Dhillon et al. (2004a) proposed the ap-

plication of a negative shift to the diagonal of the Gram matrix. Specifically, a multiple σ

of the identity matrix is added to produce

KDS = σI + S (6.12)

The parameter σ is a negative constant, typically selected so that the trace of the kernel

matrix is approximately zero. For a normalised linear kernel matrix with trace equal to

n, this will be equivalent to subtracting 1 from each diagonal value, thereby eliminating

the first and last terms from the document-centroid distance calculation (6.11).

The diagonal shift technique is equivalent to the addition of a negative constant to

the eigenvalues of S. As a result, KDS will no longer be positive semi-definite and the

kernel k-means algorithm will not be guaranteed to converge when applied to this matrix.

Figure 6.5 compares the trailing eigenvalues for the matrix shown in Figure 6.4, before

and after applying a shift of σ = −1. Notice that the modification of the diagonal entries

has the effect of shifting each eigenvalue down by 1. Consequently, a large number of

eigenvalues are below zero, signifying that the modified matrix is indefinite.

The application of diagonal shifts to Gram matrices has previously proved useful in

supervised kernel methods. However, rather than seeking to reduce diagonal dominance,

authors have most frequently used the technique to ensure that a kernel matrix is positive

semi-definite. Several authors have previously proposed the addition of a non-negative

constant to transform indefinite symmetric matrices into valid kernels. Unfortunately,

this will have the side effect of increasing the dominance ratio. Specifically, Saigo et al.

(2004) suggested adding a shift σ = |λn|, where λn is the negative eigenvalue of the kernel

matrix with largest absolute value. It is evident from Figure 6.5 that a positive shift will

131



Figure 6.5: Set of leading eigenvalues in the range [10, 90] for a normalised linear kernel
matrix constructed on a subset of 90 documents from the classic3 corpus.

often result in a matrix that is once again diagonally dominated. In addition, computing

a full spectral decomposition for a large term-document matrix will often be impractical,

although Wu et al. (2005) did suggest an estimation approach for approximating λn.

Subpolynomial Kernel With Empirical Kernel Map (SPM)

To address the problems introduced by large diagonals in SVMs, Schölkopf et al. (2002)

suggested the reduction of the dynamic range of the kernel matrix by transforming its

entries using a subpolynomial kernel function. The application of such a function has

the range of “flattening” the gap between high affinity values (which will predominately

correspond to self-similarities for certain kernels when applied to text data) and low affinity

values. Formally, a subpolynomial kernel function is defined as

κSP (xi, xj) = 〈xi, xj〉p (6.13)

where 0 < p < 1 is a user-defined degree parameter. For a corresponding kernel matrix

KSP , decreasing the value of the degree p will have the effect of reducing the ratio of

diagonal entries to off-diagonal entries. Unlike the diagonal shift technique, the non-linear

transformation introduced by Eqn. 6.13 directly modifies the pair-wise affinities between

the off-diagonal entries in S, which may potentially distort the underlying cluster structure.

An important issue that must be addressed when using a subpolynomial kernel is the

selection of the parameter p. If the value is too large the Gram matrix will remain di-

132



agonally dominated. On the other hand, if the value of p is too small, all documents

will tend to become equally similar, thereby obscuring the true structures in the data.

Schölkopf et al. (2002) suggested the use of standard cross-validation techniques for se-

lecting p. However, this may not be feasible in cases where other key parameters such as

the number of clusters k must also be determined by repeatedly clustering the data.

Since the kernel matrix κSP may no longer be a valid kernel, it may be desirable to

apply some technique to render the matrix positive definite. Once such approach is the

empirical kernel map method (Schölkopf & Smola, 2001). This involves mapping each

document xi to an n-dimensional feature vector

φm(xi) = (κ(xi, x1), . . . , κ(xi, xn))
T

(6.14)

By using this feature representation, we can derive a positive definite kernel matrix by

simply computing the dot products

KSPM = KSPKSP
T

(6.15)

In practice, normalising all rows of KSP to unit Euclidean length prior to computing the

dot product leads to significantly better results.

Diagonal Shift With Empirical Kernel Map (DSM)

While the empirical map technique was used by Schölkopf et al. (2002) to produce a

valid kernel from the matrix of a subpolynomial kernel, this approach can be applied in

combination with other reduction methods. Thus, even if we alter the diagonal of the

kernel matrix in an arbitrary manner so that it becomes indefinite, we may still recover a

positive definite matrix that will guarantee convergence for the kernel k-means algorithm.

Here we consider the possibility of applying a negative shift to minimise the trace of

the kernel matrix as described previously. This is followed by the construction of the

empirical map KDSM = KDSKDS
T
, after normalising the rows of KDS to unit length.

While this approach does reduce the dominance ratio (6.10), it should be noted that the

application of the dot product will produce a kernel matrix with trace greater than zero.

Thus, it can be viewed as providing a balance between reducing dominance and ensuring

that the kernel matrix remains positive semi-definite.

133



Algorithm Adjustment (AA)

When attempting to apply supervised kernel methods to indefinite kernel matrices, Wu

et al. (2005) distinguished between two fundamental strategies: spectrum transformation

approaches that perturb the original matrix to produce a valid Gram matrix, and algorith-

mic approaches that involve altering the formulation of the learning algorithm. A similar

distinction may be made between diagonal dominance reduction techniques. We now pro-

pose a new algorithmic approach that involves adjusting the kernel k-means algorithm

described by Schölkopf et al. (1998) to eliminate the influence of self-similarity values.

If one considers the distance between a document xi and the cluster Ca to which it has

been initially assigned, a dominant diagonal will lead to a large value in the third term

of Eqn. 2.32. This will often cause xi to remain in Ca during the reassignment phase,

regardless of the affinity between xi and the other documents in Ca. A potential method

for alleviating this problem is to reformulate the reassignment step as a “split-and-merge”

process, where self-similarity values are not considered. Rather, we assign each document

to the nearest centroid, where the document itself is excluded during centroid calculation.

Formally, each document xi is initially removed from its cluster Ca, leaving a cluster

Ca − {xi} with centroid denoted µa′ . For each alternative candidate cluster Cb, b 6= a, we

consider the gain achieved by reassigning xi to Cb rather than returning it back to Ca.

This gain is quantified by the expression:

∆ab(xi) = ||φ(xi)− µa′ ||2 − ||φ(xi)− µb||2 (6.16)

By considering the definition of squared object-centroid distance in a kernel space (2.32),

it is apparent that the diagonal value Kii is not considered in the computation of ∆ab.

If max
b

∆ab(xi) > 0, then xi is reassigned to the cluster Cb which results in the maximal

gain. Otherwise, xi remains in cluster Ca. As with the standard batch formulation of

kernel k-means, centroids are only updated after all n documents have been examined. A

summary of the procedure is given in Figure 6.6.

This strategy could potentially be applied to improve the performance of the stan-

dard k-means algorithm in sparse spaces where self-similarity values have undue influence.

However, the repeated adjustment of centroids in a high-dimensional space is likely to be

impractical. Fortunately, for kernel k-means, we can efficiently compute ∆ab by caching the

contribution of each document to the common term in Eqn. 2.32, making it unnecessary

to recalculate the term in its entirety when evaluating each document for reassignment.

134



1. Select k arbitrary initial clusters {C1, . . . , Ck}.

2. For each object xi and cluster Cb such that xi ∈ Ca and Ca 6= Cb, compute the
potential gain for moving xi to Cb:

∆ab(xi) = ||φ(xi)− µa′ ||2 − ||φ(xi)− µb||2

3. If maxb ∆ab(xi) > 0, reassign xi to Cb = arg max
b

∆ab(xi). Otherwise leave xi in Ca.

4. Repeat from Step 2 until some termination criterion is satisfied.

Figure 6.6: Kernel k-means with algorithm adjustment (AA).

6.3.4 Comparison of Reassignment Behaviour

Dhillon et al. (2002a) observed that spherical k-means often becomes trapped at an ini-

tial clustering, where the similarity of any document to its own centroid is much greater

than its similarity to any other centroid. As discussed previously, a diagonally dominated

kernel matrix frequently elicits similar behaviour from the kernel k-means algorithm. Con-

sequently, the algorithm will converge after relatively few reassignments have been made

to a local solution that is close to the initial partition. If the initial clusters are ran-

domly selected, it is possible that the final clustering will be little better than random. In

addition, multiple runs may produce significantly different partitions of the same data.

To gain a clearer insight into this problem, we examine the reassignment behaviour

resulting from the application of each of the reduction strategies proposed in the last

section. Figure 6.7 illustrates the mean percentage of accepted reassignments occurring

during the first 10 iterations of the kernel k-means algorithm when applied to the data

represented by the matrix shown in Figure 6.4. It is evident that applying the algorithm

to the original dominated matrix results in significantly fewer reassignments, which can

be viewed as a cursory search of the solution space. It is interesting to note that these

reassignment patterns are replicated to varying degrees across all the datasets described in

Chapter 5. In this example, the increased number of reassignments coincides with higher

accuracy and stability. For instance, the application of the DS strategy leads to mean

NMI and ANMI scores of 0.84 and 0.93 respectively, indicating that kernel k-means is

frequently successful in the identification of the three underlying classes.

135



Figure 6.7: Average percentage of accepted reassignments made during the first 10
iterations of the kernel k-means algorithm, when applied to a subset of 90 documents
from the classic3 corpus.

6.3.5 Experimental Evaluation

We now evaluate the degree to which the diagonal dominance reductions strategies de-

scribed previously can improve our ability to accurately and consistently group text docu-

ments when working with real-world corpora. Table 6.4 provides details of the normalised

linear kernel matrices for the datasets used in our experiments, including mean affinity

values for three cases: all pairs of documents, pairs of documents associated with the same

natural class, and pairs belonging to different classes. The corresponding dominance ratios

indicate that the kernel matrices generally exhibit significant diagonal dominance.

Dataset Mean Affinity Ratio
Overall Intra-Class Inter-Class

bbc 0.04 0.07 0.03 24.18
bbcsport 0.06 0.09 0.05 16.19
classic 0.02 0.04 0.01 50.73
classic3 0.03 0.05 0.01 40.53
cstr 0.06 0.10 0.04 17.10
ng17-19 0.03 0.04 0.03 29.44
ng3 0.03 0.05 0.02 30.93
reuters5 0.04 0.09 0.02 23.83
reviews 0.04 0.06 0.03 27.18
sports 0.04 0.06 0.03 27.75

Table 6.4: Details of normalised linear kernel matrices constructed on real-world datasets.

136



For each approach, we performed 200 trials of the clustering procedure, which was

randomly initialised in each case. We set the number of clusters k to correspond to the

number of natural classes in the data. For experiments using a subpolynomial kernel,

we tested values for the degree parameter from the range [0.4, 0.9]. We observed that

values for p < 0.4 invariably resulted in excessive flattening of the range of values in the

kernel matrix, producing partitions that were significantly inferior to those generated on

the original matrix.

To compare the accuracy of the clustering techniques, we again employ the NMI mea-

sure. As discussed in Section 2.3, many clustering algorithms such as k-means and its

variations are particularly sensitive to initial starting conditions. This makes them prone

to converging to different local minima when using a stochastic initialisation strategy.

Therefore, when selecting a diagonal reduction method, we seek to identify a robust ap-

proach that will allow us to consistently produce accurate, reproducible clusterings. In

our experiments, we assessed the stability of each candidate method using the average

normalised mutual information (ANMI) between the set of all partitions generated on

each dataset, calculated using Eqn. 5.1.

Analysis of Results

Our experiments indicate that all of the reduction approaches under consideration have

merit. In particular, Table 6.5 shows that the AA and DS methods yield improved cluster-

ing accuracy in all cases. Generally, we observed that diagonal dominance reduction has

Dataset Orig. DS DSM AA SPM
bbc 0.82 ± 0.07 0.84 ± 0.07 0.81 ± 0.08 0.85 ± 0.06 0.84 ± 0.06
bbcsport 0.71 ± 0.11 0.82 ± 0.08 0.78 ± 0.07 0.80 ± 0.08 0.75 ± 0.09
classic 0.73 ± 0.03 0.73 ± 0.03 0.71 ± 0.02 0.74 ± 0.02 0.72 ± 0.02
classic3 0.93 ± 0.06 0.93 ± 0.06 0.92 ± 0.08 0.94 ± 0.06 0.91 ± 0.06
cstr 0.70 ± 0.05 0.75 ± 0.04 0.70 ± 0.02 0.74 ± 0.04 0.71 ± 0.03
ng17-19 0.38 ± 0.13 0.41 ± 0.14 0.39 ± 0.10 0.42 ± 0.13 0.46 ± 0.11
ng3 0.81 ± 0.11 0.83 ± 0.11 0.68 ± 0.08 0.84 ± 0.10 0.79 ± 0.11
reuters5 0.58 ± 0.05 0.59 ± 0.04 0.62 ± 0.05 0.59 ± 0.04 0.60 ± 0.06
reviews 0.57 ± 0.07 0.59 ± 0.05 0.32 ± 0.06 0.59 ± 0.05 0.46 ± 0.08
sports 0.66 ± 0.06 0.66 ± 0.05 0.53 ± 0.07 0.67 ± 0.05 0.53 ± 0.06

Table 6.5: Summary of NMI accuracy results (mean and standard deviation) for kernel
clustering with dominance reduction, when applied to real-world text datasets.

137



Dataset Orig. DS DSM AA SPM
bbc 0.83 0.88 0.86 0.90 0.90
bbcsport 0.63 0.82 0.83 0.78 0.74
classic 0.89 0.89 0.81 0.90 0.79
classic3 0.96 0.97 0.95 0.97 0.96
cstr 0.71 0.81 0.79 0.81 0.77
ng17-19 0.45 0.52 0.60 0.52 0.63
ng3 0.81 0.84 0.68 0.86 0.82
reuters5 0.74 0.78 0.92 0.78 0.87
reviews 0.76 0.82 0.86 0.81 0.70
sports 0.72 0.74 0.78 0.74 0.72

Table 6.6: Summary of ANMI stability results for kernel clustering with dominance
reduction, when applied to real-world text datasets.

a greater effect on some datasets than on others. While the difference in reassignment be-

haviour after reduction is less pronounced on datasets such as classic3, there is no strong

correlation between the distribution of the affinity values in the kernel matrix and the

increase in accuracy. However, it is apparent from Table 6.6 that applying kernel k-means

to a dominated kernel matrix consistently results in poor stability. It is clear that the

restriction placed on the reassignment behaviour in these cases frequently results in less

deviation from the initial random partition, thereby increasing the overall disagreement

between solutions. We now discuss the performance of each of the approaches individually.

Diagonal Shift (DS). Table 6.5 shows that the negative diagonal shift approach fre-

quently produced clusterings that were more accurate than those generated on the

original dominated kernel matrices. As noted in Section 6.3.3, this method provides

no guarantee of convergence. However, our results support the assertion made by

Dhillon et al. (2004a) that, in practice, lack of convergence may not always be a

problem. Frequently we observed that a comparatively stable partition is identified

after a relatively few number of iterations. At this stage the algorithm proceeds to

oscillate indefinitely between two nearly identical solutions without ever attaining

convergence. To address this issue, we chose to terminate the reassignment pro-

cess after five consecutive oscillations were detected and select the solution with the

lowest distortion. This had no noticeable adverse effect on clustering accuracy.

Diagonal Shift With Empirical Kernel Map (DSM). While the application of the

empirical kernel map technique subsequent to a diagonal shift does guarantee con-

138



Dataset p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9
bbc 0.83 0.84 0.83 0.84 0.84 0.83
bbcsport 0.67 0.70 0.73 0.75 0.76 0.76
classic 0.71 0.73 0.73 0.72 0.72 0.71
classic3 0.89 0.90 0.89 0.91 0.91 0.92
cstr 0.66 0.67 0.69 0.71 0.72 0.72
ng17-19 0.44 0.45 0.45 0.46 0.43 0.41
ng3 0.85 0.85 0.82 0.79 0.79 0.74
reuters5 0.56 0.56 0.59 0.60 0.61 0.62
reviews 0.55 0.52 0.48 0.46 0.44 0.42
sports 0.51 0.52 0.53 0.53 0.54 0.55

Table 6.7: Comparison of mean NMI accuracy results for kernel clustering of real world
text-datasets, when using a subpolynomial kernel with degree parameter p ∈ [0.4, 0.9].

vergence after relatively few iterations, the map also has the effect of increasing

the dominance ratio, resulting in accuracy gains that are not as significant as those

achieved by the other strategies. The higher level of consistency between solutions

generated using this method does suggest that it represents a reasonable trade-off be-

tween accuracy and stability. However, there remains the additional computational

expense of constructing the matrix KDSM , which requires O(n3) time.

Subpolynomial Kernel With Empirical Kernel Map (SPM). For the subpolyno-

mial kernel reduction method, our experimental findings underline the difficulty of

setting the degree parameter p. The gains in accuracy resulting from this approach

were significant, though less consistent than those achieved by the other methods.

On certain datasets, such as the ng3 and reviews collections, specific values of p lead

to a large improvement in both accuracy and stability, while in other cases there

was little or no improvement. This suggests that the alteration of cluster structure

induced by the subpolynomial function may prove beneficial in some cases, but not

in others. Therefore, while a value of p = 0.7 lead to the highest mean accuracy

when considering all datasets, from the results shown in Table 6.7 we conclude that

the selection of a value for p is largely data dependent. Once again, the expense of

calculating the empirical map must be taken into consideration when making use of

this reduction method. As with the DSM approach, the application of the empirical

map resulted in a marked increase in cluster stability.

Algorithm Adjustment (AA). The adjusted kernel k-means algorithm yielded im-

139



provements in accuracy that were marginally better than those produced by the

diagonal shift method (DS), while also achieving slightly higher ANMI stability

scores. The correlation between the two methods is understandable given their sim-

ilar reassignment behaviour. This stems from the fact that applying a negative

diagonal shift of σ = −1 to a matrix with trace equal to n effectively eliminates the

dominant last term in Eqn. 6.11, leading to document-centroid distances that are

approximately the same as those achieved using the “split-and-merge” adjustment.

It should be noted that, while the AA reduction method frequently failed to achieve

complete convergence, the oscillation detection technique described previously re-

solved this problem satisfactorily on all datasets.

From our experiments, it is apparent that the DS and AA techniques both represent

efficient strategies for reducing diagonal dominance and thereby improving the output of

centroid-based kernel clustering algorithms. Of these, the latter leads to slightly greater

improvement in clustering accuracy.

While the results shown previously relate to experiments that involve using a value

k corresponding to the number of natural classes in the data, we have also noted that

comparable improvements in accuracy and stability are apparent on all datasets when

using alternative values for the number of clusters. As an example, Figure 6.8 shows a

comparison of the mean NMI scores for the original kernel k-means algorithm and the new

AA technique, covering a range of values of k. In several cases, such as for the cstr dataset

(a) bbcsport dataset (b) cstr dataset

Figure 6.8: Plot of mean NMI accuracy scores for clusterings generated by kernel k-means
and adjusted kernel k-means, for values of k ∈ [2, 10].

140



shown in Figure 6.8(b), the gain in accuracy becomes more pronounced as the number of

clusters increases. This is largely due to the frequent presence of smaller clusters in the

initial clustering solutions, from which incorrectly assigned documents fail to escape due

to the strong influence of self-similarity.

6.3.6 Summary

We have considered a range of practical solutions to the issues introduced by diagonally

dominated kernel matrices in unsupervised kernel methods. Furthermore, we have demon-

strated the effectiveness of the solutions when performing the task of document cluster-

ing. From our evaluation, it is apparent that the presence of disproportionately large

self-similarity values precipitates a reduction in the number of reassignments made by the

kernel k-means algorithm. This may limit the extent to which the solution space is ex-

plored, causing the algorithm to become stuck close to its initial state. In cases where the

initialisation strategy is stochastic or unsuitable, this can result in an appreciable decrease

in accuracy and cluster stability. To remedy this, in Section 6.3.3 we proposed a selection

of strategies for reducing the effects of dominance. The diagonal shift and adjusted kernel

k-means techniques represent particularly appealing options for this task, particularly in

light of the negligible increase in running time resulting from their application.

An interesting point arising from our experiments is that techniques such as the diago-

nal shift strategy, which work on indefinite matrices, can still produce good clusterings and

can be terminated after a tractable number of iterations without any significant decrease

in clustering accuracy. This indicates that kernel k -means may not be as sensitive to the

requirement for a positive semi-definite kernel matrix as supervised algorithms, such as

the SVM classifier.

We suggest that the diagonal dominance strategies described here may also be useful

in improving other centroid-based kernel clustering methods, such as the weighted kernel

k-means algorithm (Dhillon et al., 2004b) or a kernel-based formulation of the bisecting

k-means algorithm given in Section 2.4.2. In addition, we believe that these strategies will

have merit when applying kernel clustering in other domains, such as bioinformatics and

image retrieval, where the ratio of diagonal to off-diagonal entries in the kernel matrix will

often be significantly higher.

141



Chapter 7

Aggregating Information from

Multiple Clusterings

7.1 Introduction

A compelling notion in machine learning research is the idea that, by combining the output

of a group of algorithms, a superior solution may be found for a given learning problem.

Ensemble classification techniques, such as bagging and boosting, are the most prominent

examples of this idea (Breiman, 1996). Similar techniques can be employed in unsuper-

vised learning problems, where analysing information obtained from multiple clustering

solutions can provide us with a better overall view of the structure of a dataset. In recent

cluster analysis research, it has been shown that this type of information can be used in a

number of ways. For instance, the ensemble clustering algorithms described in Section 2.9

can produce more accurate, stable clustering solutions by combining a collection of base

clusterings. Another previously explored area is that of stability analysis, which is dis-

cussed in Section 3.4. Techniques based on this concept use the information aggregated

over many runs of a clustering algorithm to produce a robust assessment regarding the

validity of a given clustering model.

Even with the availability of significant computing resources, the scalability issues

arising from the dimensionality and size of the data models used in text mining tasks

remain a constant concern. A serious drawback, common to both ensemble clustering

and stability analysis, is the significant computational cost incurred when generating and

analysing multiple clusterings. In both cases, a larger collection of base clusterings is

142



desirable to provide more conclusive evidence regarding the cluster structures. A user

employing these methods on large corpora must therefore deal with the classic trade-

off between speed and precision. Many users will be reluctant to compromise on either

algorithm scalability or accuracy. As a consequence, neither aggregation method has been

widely adopted for use in document clustering tasks.

To address these concerns, we now propose efficient strategies for aggregating informa-

tion from multiple clusterings, which maintain algorithm performance while significantly

reducing running time. In Section 7.2, we consider a prediction-based approach for sta-

bility analysis suitable for estimating the number of clusters in a document collection. In

Section 7.3, we shift our focus to the related problem of rendering ensemble clustering

techniques more practical for use on text datasets, without negatively impacting upon

algorithm accuracy or stability.

7.2 Efficient Prediction-Based Cluster Validation

Validation techniques based on stability analysis have been shown to provide an effective

means of determining the optimal number of clusters k̂ in a dataset (Lange et al., 2004).

For small datasets, stability-based validation techniques offer a highly attractive option

for inferring a value for k̂. However, as the number of dimensions grows, the time required

to repeatedly apply an algorithm such as k-means will greatly increase. The number of

objects n will also be a limiting factor, since a larger value for n will substantially increase

the computational cost of the clustering and the stability assessment procedures, which

typically run in O(n2) time or slower. Given these scalability issues, it is unsurprising

that stability analysis methods have rarely been applied to large-scale datasets such as

text corpora. In this section, we tackle these issues by proposing an efficient prediction-

based validation scheme based on the idea of prototype reduction, which involves producing

a smaller set of objects or prototypes to represent a given dataset.

7.2.1 Background

Prediction-Based Validation for Text Data

Prediction-based methods for stability analysis are motivated by the concept of prediction

accuracy in supervised learning (Tibshirani et al., 2001). To illustrate the relevance of this

idea in the context of model selection for document clustering, we consider a small subset

143



−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

PC1

P
C

2

Student Version of MATLAB

(a) Training (k = 2)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

PC1

P
C

2

Student Version of MATLAB

(b) Testing (k = 2)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

PC1

P
C

2

Student Version of MATLAB

(c) Training (k = 3)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

PC1
P

C
2

Student Version of MATLAB

(d) Testing (k = 3)

Figure 7.1: Plot of the first two Principal Components of a subset of 450 documents
from the 20NG collection, showing partitions generated when applying two iterations of
prediction-based validation.

of the 20NG collection, consisting of 300 documents from the ‘cryptography’ newsgroup

and 150 documents from the ‘hockey’ newsgroup. Figures 7.1(a) and 7.1(b) show training

and testing partitions of this data generated for k = 2. Clearly, a suitable classifier built

upon the groups in the former is likely to be successful at predicting the assignment of

documents in the latter partition. In contrast, the partitions of the same sets for k = 3, as

shown in figures 7.1(c) and 7.1(d), are significantly different. This makes it unlikely that

a classifier constructed on the former will accurately predict the latter. If these patterns

are frequently replicated over many different splits of the data, it is reasonable to conclude

that k = 2 represents a more appropriate choice for the number of clusters than k = 3.

Prototype Reduction

Prototype reduction techniques have been extensively used in supervised learning for tasks

involving large datasets, typically in conjunction with a nearest-neighbour classifier. These

techniques are concerned with producing a minimal set of objects or prototypes to repre-

sent the data, while ensuring that a classifier applied to this set will perform approximately

as well as on the original dataset. In the literature, these techniques are generally divided

144



into two categories: prototype selection techniques seek to identify a subset of represen-

tative objects from the original data, while prototype extraction techniques involve the

creation of an entirely new set of objects. A comprehensive overview of supervised reduc-

tion schemes has been provided by Bezdek & Kuncheva (2001).

Many reduction techniques are computationally intensive, often involving clustering-

like procedures to identify relevant prototypes. In contrast, Hamamoto et al. (1997) pro-

posed a simple stochastic technique (BTS), which is based on bootstrap editing. Initially,

a random sample of n′ seed objects is drawn from the dataset. Each seed object is then

replaced by a new prototype constructed from the mean of its p-nearest neighbours and

the seed itself. A 1-NN classifier is subsequently applied to the new set of n′ prototypes.

The entire process may be repeated multiple times to give more robust results. Kim

& Oommen (2005) described a novel framework that involves using a chosen reduction

scheme, such as BTS, to produce a reduced set of prototypes, from which a smaller kernel

matrix is constructed. Ensemble classifier methods are then employed on this matrix to

compensate for any loss in accuracy resulting from the reduction in dataset size.

While most work in prototype reduction has focused on supervised learning tasks, the

concept has been used implicitly as part of many clustering algorithms. Notably, Cutting

et al. (1992) proposed a technique, referred to as fractionation, to improve the efficiency of

agglomerative hierarchical clustering methods. This technique can be viewed as perform-

ing a type of prototype extraction. Initially, a corpus is divided into a predefined number

of fractions. The documents in each fraction are then clustered separately so that, by

treating each cluster as a single “meta-document”, the number of data objects is subse-

quently reduced. The buckshot method, also proposed by Cutting et al. (1992), employs a

stochastic prototype selection scheme and combines elements of classical hierarchical and

partitional algorithms to reduce the time required to cluster large sets of documents. It

is interesting to note that the application of prototype selection in clustering is closely

related to both the problem of outlier removal (Kollios et al., 2003) and the choice of seeds

in cluster initialisation (Juan & Vidal, 2000).

7.2.2 Kernel Prediction-Based Validation

To avoid having to work in the original high-dimensional feature space, we make use of

the recently proposed kernel clustering methods as described in Section 2.8. The ad-

vantage of these methods in the context of stability analysis stems from the fact that,

145



having constructed a single kernel matrix K, multiple clusterings can subsequently be

generated without referring back to the original data. Since the k-means algorithm has

commonly been used in both stability analysis and document clustering, we make use of

the corresponding kernelised version of the algorithm.

To form the basis for our validation scheme, we choose the prediction-based method

proposed by Tibshirani et al. (2001) due to its empirical success and computational ad-

vantage over other stability analysis methods. The latter benefit derives from the fact that

each run of the clustering algorithm only considers a sample of n
2 objects. Formally, the

validation process involves applying two-fold cross-validation to randomly split the dataset

X = {x1, . . . , xn} into disjoint training and test sets, denoted Xa and Xb respectively. Both

sets are subsequently clustered using kernel k-means with random initialisation. A predic-

tion for the assignment of objects in the test set is then produced by assigning each xi ∈ Xb

to the nearest centroid in training clustering. The accuracy of this prediction is assessed

by measuring the degree to which it agrees with the original clustering of Xb. To measure

prediction accuracy, we propose using an adjusted version of the prediction strength index

(3.34), because of its strong theoretical foundation and superior empirical performance.

Rather than manually choosing from among the potential values, we automatically select

the value k that leads to the maximum average score over τ runs. However, prediction

strength does exhibit a strong bias toward smaller values of k as demonstrated by the

Figure 7.2: Plot of the expected values for the prediction strength index when applied
to randomly generated pairs of partitions for k ∈ [2, 20], illustrating the bias of the index
with respect to smaller values of k.

146



1. Construct a n× n kernel matrix K.

2. Randomly generate τ splits of X into training and test sets.

3. For each value of k ∈ [kmin, kmax] :

(i) For each split (Xa,Xb):

a. Apply kernel k-means to the training set Xa using kernel K.
b. Predict the assignment of documents in Xb based on the centroids from the

clustering of Xa.
c. Apply kernel k-means to the test set Xb using kernel K.
d. Evaluate prediction strength and correct for chance.

(ii) Compute the mean corrected prediction strength for k over all τ splits.

4. Estimate k̂ by selecting the candidate value k leading to the highest mean corrected
prediction strength.

Figure 7.3: Kernel prediction-based validation scheme.

plot of expected values given in Figure 7.2. We can readily address this by employing

the widely-used adjustment technique described in Hubert & Arabie (1985) to correct for

chance agreement:

S′(Cb,Pb) =
S(Cb,Pb)− S̄k(Cb,Pb)

1.0− S̄k(Cb,Pb)
(7.1)

Note that S̄k(Cb,Pb) is the expected prediction strength on the split (Xa,Xb), where each

partition contains k clusters. This value may be approximated by calculating the mean

value of Eqn. 3.34 over a large number of pairs of randomly generated partitions.

As discussed by Lange et al. (2004), the choice of classifier used to make predictions

should complement the clustering algorithm. To “mimic” the assignment behaviour of

the kernel k-means algorithm, we employ a kernel nearest centroid classifier, such that

each object in Xb is classified as being a member of the class represented by the nearest

kernel pseudo-centroid in the training clustering. Subsequently, we use corrected predic-

tion strength to evaluate the degree to which the predicted classification agrees with the

clustering of Xb as produced by kernel k-means. The full validation scheme is summarised

in Figure 7.3.

7.2.3 Kernel Prototype Reduction

In the previous section, we described a stability-based validation method suitable for use

on high-dimensional data. However, the validation process still requires τ runs consisting

147



of clustering and prediction assessment phases, which both run in O((n
2 )2) time. Clearly,

decreasing n will make the process significantly less computationally expensive. Motivated

by the large-scale clustering technique described by Cutting et al. (1992), an intuitive

solution is to create a reduced set of n′ < n objects, upon which the validation procedure

may be applied. However, any such reduction must be performed in a way that preserves

the structures in the data.

Meeting these requirements without any form of supervision is not a trivial task.

Bezdek & Kuncheva (2001) noted that reduction approaches utilising class information

tend to be far more successful than their purely unsupervised counterparts. Many su-

pervised prototype reduction approaches process each class separately. As a result, the

reduced prototypes will be “meaningful” in the sense that they will be constructed from

data objects belonging to a single class. In the absence of class labels, we must rely upon

intrinsic properties of the data to ensure that all structures in the data are adequately

represented. Unfortunately, text corpora often contain unbalanced clusters, which may

also differ in their relative densities, making the task particularly problematic. To ad-

dress these issues, we propose a reduction scheme consisting of two phases. In the first

phase, prototype extraction is used to generate a set of candidate prototypes formed from

small homogeneous regions of the data. The second phase involves selecting a subset of

n′ prototypes which are used to build a n′ × n′ reduced kernel matrix, denoted by K′.

Prototype Extraction

Initially, we create a set of extracted prototypes S = {s1, . . . , sn} in a manner similar

to that employed by the supervised BTS reduction scheme (Hamamoto et al., 1997),

where new prototypes are formed by locally combining subsets of the original dataset X .

Formally, we define a neighbourhood Ni as a subset of X consisting of a seed object xi

together with its set of p nearest neighbours. A new prototype si may be constructed from

the mean of the p + 1 objects in a neighbourhood. Since we wish to work in the kernel-

induced space only, we consider si to be the pseudo-centroid of the subset Ni as calculated

from the values in K. We note that regions forming cluster structures will normally be

locally homogeneous, in the sense that the majority of the set of neighbours of each object

are likely to belong to the same cluster as that object (Frederix & Pauwels, 2004; Ding

& He, 2004). Therefore, prototypes constructed from the centroid of sufficiently small

neighbourhoods will generally be representative of a single natural class.

148



(a) Full kernel (b) Reduced kernel (ran-
dom sampling)

(c) Reduced kernel (den-
sity biased selection)

Figure 7.4: Normalised linear kernels for a subset of 300 documents from the 20NG col-
lection, showing the relation between the original kernel matrix and matrices constructed
using prototype reduction.

Density-Biased Candidate Selection

The problem remains of selecting a subset S ′ of n′ optimal prototypes from the n possible

candidates. A possible solution is to apply unbiased random sampling to choose S ′, where

each reduced prototype has an equal probability of being selected. However, this approach

has several drawbacks in the context of validation. Ideally, we wish to select a fraction of

prototypes from each class that is proportional to the size of that class in the original data.

A single random sample from S is not guaranteed to achieve this. To illustrate the problem,

we consider the two-class subset of 450 documents from the 20NG collection which was

considered in Section 7.2.1. Figure 7.4(a) shows the full normalised linear kernel matrix

constructed on the original data, while Figure 7.4(b) shows a reduced approximation

produced by randomly selecting seed objects. It is evident from the latter that the smaller

‘hockey’ class is not adequately represented by the random reduction process. We observe

that reduced prototypes chosen in this way frequently fail to produce a true proxy for the

dataset, resulting in poor estimations for k̂ in the subsequent validation process. In these

cases, the failure is often due to poor sampling of smaller clusters or important sub-regions

within clusters. While we could run the process multiple times and aggregate the results,

the computational cost would negate the benefits of performing prototype reduction.

As an alternative, the second phase of our reduction procedure employs a density-

biased strategy to select S ′. This strategy has similar goals to existing density-biased

sampling techniques (e.g. Palmer & Faloutsos, 2000), but is both deterministic and signif-

icantly less computationally demanding. Firstly, we define the compactness (i.e.density)

149



of a neighbourhood Na as the average of the pairwise affinities between its members:

C(Na) =

∑
xi,xj∈Na

Kij

|Na|2
(7.2)

where |Na| = p + 1. This is equivalent to the “self-similarity” of the pseudo-centroid

formed from Na. In the selection process, the prototypes in S are ranked in descending

order according to their compactness. From these, we uniformly choose n′ = n
ρ prototypes,

where ρ is the reduction rate that determines the degree to which the number of data

objects should be reduced. Specifically, we select every ρ-th prototype from the ordered

list, thereby ensuring that we represent all density patterns in the data. We then build the

reduced kernel matrix K′ based on these n′ prototypes. Rather than computing explicit

representations for the new prototypes in the original feature space, we can make use of

the values in the original kernel matrix to directly construct K′. Formally, the affinity

between a pair of reduced prototypes si and sj is defined as:

K ′
ij =

∑
xa∈Si,xb∈Sj

Kab

(p + 1)2
(7.3)

It is possible that a matrix constructed in this way may not always be positive semi-

definite. However, as observed in Section 6.3.5, this does not pose a significant problem

for the kernel k-means algorithm.

Referring back to our previous example, we see that, unlike the matrix in Figure 7.4(b),

the reduced kernel matrix shown in Figure 7.4(c) is clearly representative of the two

classes in the original dataset. In practice, we consistently observe that this density-

biased selection strategy produces extracted prototypes that accurately summarise the

underlying structures in the data. We contend that this is due to the inclusion of regions

representing clusters of varying densities and all sub-regions within those clusters.

Algorithm Efficiency

Once we have constructed the reduced kernel matrix, the validation scheme proceeds as

described in Section 7.2.2. The proposed reduction strategy results in a significant decrease

in the computational cost of the validation process. Our approach does involve a once-off

initialisation step, requiring time O(n log n) for prototype extraction and O(n′2p2) for the

construction of K′. However, the computational gains made in the subsequent validation

process are substantial. For each of the τ runs, the costs associated with clustering and

prediction assessment are both reduced to O(( n
2ρ)2).

150



7.2.4 Application to Document Clustering

While our proposed method may be used in conjunction with any valid kernel function, for

document clustering we suggest the use of a normalised linear kernel (2.36). As discussed

in Section 6.3.2, the matrix of this kernel will often suffer from diagonal dominance.

To address the problem, we make use of kernel k-means with algorithm adjustment as

proposed in Section 6.3.3. A summary of the complete validation process is provided in

Figure 7.5.

When performing prototype reduction, we assume that regions will be locally homoge-

neous, which should generally be the case when an appropriate kernel function is chosen.

To maximise homogeneity, we select a low value for the number of nearest neighbours.

For document corpora, we have observed that the use of p = 5 consistently leads to the

Initialisation Phase

1. Construct a full n× n kernel matrix K from the original data.

2. Extract candidate prototypes S, consisting of n neighbourhood pseudo-centroids.

3. Evaluate compactness of candidates in S and sort accordingly in descending order.

4. Uniformly select a subset S ′ of n′ reduced prototypes from the ordered list.

5. Construct the n′ × n′ reduced kernel matrix K′ based on S ′ using Eqn. 7.3.

Validation Phase

1. Randomly generate τ splits of S ′ into training and test sets.

2. For each value of k ∈ [kmin, kmax] :

(i) For each split (Xa,Xb):

(a) Apply adjusted kernel k-means to the training set Xa using kernel K′.
(b) Predict the assignment of documents in Xb based on centroids from clus-

tering of Xa.
(c) Apply adjusted kernel k-means to the test set Xb using kernel K′.
(d) Evaluate prediction strength and correct for chance.

(ii) Compute mean corrected prediction strength for k.

3. Estimate k̂ by selecting the candidate value k leading to the highest mean corrected
prediction strength.

Figure 7.5: Kernel prediction-based validation scheme, with prototype reduction.

151



construction of meaningful prototypes that represent a single natural class. Empirical ob-

servations also indicate that a value of ρ = 4 for the reduction rate substantially reduces

the time required for the validation process, without significantly affecting its accuracy.

The selection of ρ is also related to the maximum number of runs τ . The computational

gains resulting from prototype reduction facilitate the use of a larger value (e.g. τ = 200)

to guarantee the robustness of the overall validation procedure. It must be stressed that,

in practice, the use of these general purpose parameter values proved to be effective on a

diverse range of datasets, indicating that the proposed validation method is quite robust

to the choice of values for these parameters. This allows us to focus on the more immediate

task of estimating the number of clusters.

7.2.5 Experimental Evaluation

In this section, we compare the validation scheme proposed in Section 7.2 with techniques

operating on the full set of original data objects. The experimental process involved

applying four stability analysis schemes to each dataset:

KM-S: Prediction-based validation using corrected prediction strength (Tibshirani

et al., 2001), and k-means with cosine similarity.

KM-P: Prediction-based validation using partition similarity, and k-means with

cosine similarity (Giurcaneanu & Tabus, 2004).

KKM-S: Kernel prediction-based validation using prediction strength, as proposed

in Section 7.2.2.

RED-S: Kernel prediction-based validation using prediction strength and density-

biased prototype reduction, as proposed in Section 7.2.3.

The validation schemes were applied across a reasonable range of values for k and com-

paring their output with the “true” number of natural classes. For our experiments, we

chose the range [2, 10]. Note that, in the case of the kernel-based algorithms, we employ

the adjustment described in Section 6.3.3 to lessen the effect of diagonal dominance. In

all experiments, we set τ = 200 to minimise any variance introduced by subsampling,

and use random cluster initialisation. Algorithm running times were evaluated based on

experiments performed on an Intel Pentium IV 3.4GHz server with 2GB RAM, running

Ubuntu Linux and Sun Java 1.5.

152



Evaluation on Artificial Data

To illustrate significant differences between the validation strategies, we used the artificial

datasets derived from the 20NG collection as described in Section 5.2.2. For the purposes

of comparison, we also include results for the Calinski-Harabasz (CH) index, which was

shown to be the most suitable index for model selection from among the internal techniques

examined in Section 5.4.

Figure 7.6 summarises the relative performance of the validation schemes in terms of

the percentage of datasets on which each scheme was successful in identifying k̂. When

considering the stability analysis schemes, these results indicate that both kernel-based

algorithms consistently outperformed those employing the standard k-means algorithm.

In these cases, the application of a diagonal dominance reduction frequently lead to sig-

nificantly higher prediction accuracy. Furthermore, we see that, across the 84 artificial

datasets, RED-S generally lead to more instances where the true number of clusters was

correctly identified. This is particularly apparent for data with well-separated clusters.

The difference was less pronounced on datasets with overlapping clusters, where object

neighbourhoods were generally less homogeneous. With regard to the efficiency of these

0

20

40

60

80

100

CH KM-S KM-P KKM-S RED-S

%
 D

at
as

et
s

Balanced
Unbalanced
Non-overlapping
Overlapping

(a) Correct estimations

0

20

40

60

80

100

CH KM-S KM-P KKM-S RED-S

%
 D

at
as

et
s

Balanced
Unbalanced
Non-overlapping
Overlapping

(b) Top-3 estimations

Figure 7.6: Summary of the overall percentage of correct and top-3 estimations for k̂ as
selected by stability-based validation schemes, measured across all artificial text datasets.

153



Datasets KM-S KM-P KKM-S RED-S
Balanced 1492 1358 6117 248
Unbalanced 1280 1180 4767 181
Non-overlapping 1214 1102 4630 184
Overlapping 1487 1376 5803 223
Overall 1351 1239 5217 203

Table 7.1: Summary of the average running times (in seconds) for stability-based vali-
dation schemes when applied to all artificial text datasets.

schemes, we observed that the speed-up achieved by working on n
4 reduced prototypes was

dramatic, as illustrated by the running times listed in Table 7.1.

When comparing the performance of the stability analysis schemes to the results

achieved by the internal CH index, we see that RED-S selected the correct value k̂ more

frequently on all categories of the artificial datasets. However, CH does identify k̂ in its

top three estimations more often, particularly on those datasets with poorly separated

clusters. It should be noted that the results for the CH index are also based on results

aggregated over many clusterings, which can be costly for larger values of n. While it is

possible to apply the index on a single clustering, the instability of the underlying k-means

algorithm could easily result in a misleading estimation for k̂.

Evaluation on Real Data

In our second evaluation, we compare the validation schemes on real-world corpora that

have previously been used in document clustering. Table 7.2 shows the results of the

comparison, indicating the top three estimated values for k̂ on the real corpora. In almost

all cases, the reduced validation method (RED-S) recommended the same value of k as

that chosen when working on the full kernel matrix (KKM-S). Only in the cases of the

reuters5 and sports datasets did it fail to rate k̂ among its top three choices. However, in

Section 5.4.2 we observed that other well-known validation methods also perform poorly

on these corpora, which contain significantly overlapping clusters. It is worth nothing

that both kernel-based techniques consistently outperformed those employing standard

k-means. In these cases, our evaluations indicate that the application of a diagonal dom-

inance reduction strategy leads to a non-trivial improvement in validation accuracy.

When we compare the performance of the stability analysis methods to that of the

baseline internal technique, we see that RED-S performed at least as well in estimating

154



Dataset k̂ CH KM-S KM-P KKM-S RED-S
bbc 5 5,6,4 5,4,6 5,6,7 5,2,6 5,6,4
bbcsport 5 6,5,7 5,4,6 5,6,4 5,6,4 5,4,6
classic 4 3,4,5 5,3,4 3,5,6 5,4,6 4,5,3
classic3 3 3,4,2 3,2,4 3,2,4 3,4,5 3,4,2
cstr 4 3,4,5 3,2,4 3,4,2 3,4,5 3,4,2
ng17-19 3 5,6,4 5,4,6 5,6,4 4,5,3 4,5,3
ng3 3 3,4,5 3,4,2 3,4,5 3,4,2 3,4,2
reuters5 5 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
reviews 5 2,3,4 2,6,7 2,9,8 2,5,4 2,5,6
sports 7 6,7,5 2,3,6 2,3,6 2,5,4 2,5,6

Table 7.2: Summary of the top-3 estimations for k̂ as selected by stability-based validation
schemes, when applied to clusterings of real-world text datasets.

the number of clusters as the CH index on all but the sports dataset, providing better

estimations on four of the other datasets. It is interesting to observe that, in cases where

both stability analysis and internal validation fail to identify k̂, they still often agree

with one another. A prime example of this is the reuters5 corpus, where each of the

five methods under consideration selected k = 2 as its first choice. This suggests that

it may represent a statistically good value for the number of clusters, although it does

not agree with the manual classification for the corpus. In cases where this discrepancy

occurs, it is possible that the problem lies with the model used to represent the data

or the choice of similarity metric. If the underlying classes in the data are not linearly

separable, the use of an appropriate non-linear kernel function may resolve this problem.

In this respect, the kernel-based validation methods benefit from the modularity of kernel

clustering methods, where an alternative measure of affinity may be readily used without

modifying the validation algorithm itself.

We observed that, when using kernel-based validation, the application of prototype

reduction with ρ = 4 resulted in a 20 fold decrease in the time required for the entire

process. For example, selecting a value for k on the bbc corpus took 55 minutes when

using the full kernel matrix, while the same procedure using RED-S took only 3 minutes.

A complete comparison of algorithm running times is provided in Table 7.3, which clearly

shows that RED-S was significantly faster than any of the other strategies considered.

It is also apparent that the procedures running on the full n × n kernel matrices took

significantly longer than those performed using standard k-means, particularly on the

155



Dataset KM-S KM-P KKM-S RED-S
bbc 1503 1400 3199 139
bbcsport 434 423 315 12
classic 3181 2315 50804 2107
classic3 1592 1344 11740 522
cstr 144 142 116 5
ng17-19 2079 1971 6197 263
ng3 1881 1728 6599 288
reuters5 648 555 3397 157
reviews 4276 3960 11915 577
sports 10788 9870 90903 3137

Table 7.3: Summary of the average running times (in seconds) for stability-based vali-
dation schemes, when applied to real-world text datasets.

larger sports and classic datasets. This stems from the fact that the implementation of

k-means in our toolkit is optimised to take advantage of the sparse nature of text data.

The improvement only occurs on datasets where at least 98% of the values in the term-

document matrix are zero. However, it is worth nothing that this level of sparsity will

generally not be present in other domains, where employing validation on a full kernel

matrix may lead to computational savings.

7.2.6 Summary

In this section we proposed a practical approach to stability-based validation suitable for

the task of estimating the number of clusters in large, high-dimensional datasets such as

text corpora. The use of kernel clustering methods allows us to work on a single kernel ma-

trix rather than repeatedly computing distances in the original feature space. Moreover,

we have demonstrated that we can significantly decrease the computational demands of

the validation process by employing a form of prototype reduction to construct a reduced

kernel matrix. To ensure that the use of a condensed representation does not adversely

impact upon the accuracy of the validation process, we have proposed a density-biased

strategy for selecting a set of reduced prototypes that adequately represent the underlying

classes in the data, regardless of their relative sizes or densities. Notably, the reduction

process does not require that we explicitly represent these new prototypes as feature vec-

tors. Extensive experimental evaluations have shown this validation process to be effective

on a large number of real and artificial datasets, where it consistently produced good esti-

156



mates for the optimal number of clusters, often out-performing existing methods that are

significantly more computationally expensive. In addition, it also provided estimations

for the correct number of clusters k that were generally as good as or better than those

achieved by the best internal validation technique.

A potentially interesting avenue of research would be to combine aspects of internal and

prediction-based validation to produce an approach for model selection that rewards both

high stability and the traditional of clustering objectives of producing separated, compact

clusters. Once again, the use of prototype reduction could render such an expensive

procedure tractable for larger datasets.

While we have focused on validation in document clustering, we believe that our ap-

proach is applicable for a wide variety of other domains and kernel functions, where large

datasets would otherwise make stability analysis unfeasible. It is also apparent that the

prototype reduction strategy described here has other potential applications. In the next

section we develop this idea by applying reduction in the context of the clustering task

itself.

7.3 Efficient Ensemble Methods for Document Clustering

Recently, ensemble clustering techniques have been shown to be effective in improving

the accuracy and stability of standard clustering algorithms (Strehl & Ghosh, 2002b).

Unfortunately, the computational cost of generating and integrating a large number of

clusterings can prove problematic when working with large, high-dimensional datasets

such as text corpora. In particular, the feasibility of applying popular ensemble clustering

algorithms may be greatly limited by the number of documents. The number of unique

terms used to represent the documents can also greatly affect the running time of the base

clustering algorithm, thereby limiting the application of ensemble clustering techniques

when working with high-dimensional data.

While reducing the number of base clusterings appears to be a natural solution to this

scalability problem, an ensemble consisting of too few members is likely to result in an

unstable solution that is little better than that produced by the base clustering algorithm.

An example of this behaviour is shown in Figure 7.7, where ensemble clustering applied to

the small cstr dataset only achieves reasonable increases in accuracy and stability until at

least 40 base clustering have been generated. For larger, more complex datasets, the ideal

157



number of ensemble members may be significantly higher. Clearly an alternative strategy

is required for reducing ensemble running time.

In Section 7.2.3, we introduced a novel kernel-based prototype reduction scheme that

is effective in producing a smaller representation of a text dataset, while still preserving

the underlying class structures. An issue common to both stability analysis and ensemble

clustering is the requirement to produce a large, diverse collection of base clusterings.

We now expand upon our previous work by showing that the principles underlying the

reduction scheme are also relevant in improving the efficiency of other computationally

costly learning methods. Specifically, we propose a novel scheme for document clustering

that involves aggregating an ensemble of clusterings generated on a reduced kernel matrix.

7.3.1 Kernel-Based Ensemble Clustering

We begin by introducing a correspondence-based ensemble clustering approach that oper-

ates on a full kernel matrix, which also addresses a number of the ensemble design issues

raised in Section 2.9.

Ensemble Generation

To avoid having to repeatedly recompute similarity values in the original feature space

when generating a collection of ensemble members, we represent a full dataset of n objects

Figure 7.7: Examination of the effect of ensemble size on the accuracy and stability of
correspondence-based ensemble clustering, when applied to the cstr corpus.

158



in the form of an n × n kernel matrix K. As a base clustering algorithm, we use kernel

k-means with algorithm adjustment to negate the effects of diagonal dominance. Note

that a fixed number of clusters k is generated each time.

To encourage diversity among the ensemble members, unbiased sampling without re-

placement is applied, with random initialisation used to seed the kernel clustering proce-

dure. Minaei-Bidgoli et al. (2004) demonstrated that ensembles created in this way can

lead to results that are comparable to bootstrap aggregation, while requiring less compu-

tational time to produce the base clusterings, since the size of the individual samples will

smaller. We have observed similar behaviour when this generation approach is applied to

text data, where we found that a sampling factor of β = 0.8 generally leads to diverse

clusterings that maintain accuracy. After each sample is clustered, membership assign-

ments for the (1 − β)n out-of-sample objects are determined by applying a classification

scheme. This is analogous to the approach used in prediction-based validation as described

in Section 7.2.2, where the classifier predicts the assignments of objects by mimicking the

behaviour of the clustering algorithm. In this context, we apply a kernel nearest centroid

classifier, where each missing object is assigned to the most similar pseudo-centroid in the

base clustering.

Ensemble Integration

Once a collection of base clusterings C has been generated, we integrate the collection by

employing a correspondence clustering scheme similar to the BagClust1 algorithm pro-

posed by Dudoit & Fridlyand (2003). Unlike other ensemble clustering schemes, the final

clustering of the data is constructed incrementally as each ensemble member is generated.

Thus, the application of a subsequent clustering procedure to produce a final solution is

not required. This scheme also avoids the large storage overhead of maintaining an in-

termediate representation of C, which is a notable drawback of graph-based integration

schemes. We have observed that correspondence-based integration produces more stable

results than other schemes such as those based on pairwise co-assignment, which are often

highly sensitive to the choice of final clustering algorithm (Greene et al., 2004).

The kernel-based correspondence clustering scheme proceeds as given in Figure 7.8.

Having generated the first member C1, we construct a n× k membership matrix V:

Vij =

 1 if xi ∈ Cj in C1

0 otherwise.

159



1. Construct a full kernel matrix K and set counter t = 0.

2. Increment t and generate a base clustering Ct as follows:

(i) Draw a random sample of βn objects without replacement.

(ii) Apply adjusted kernel k-means with random initialisation to the sample.

(iii) Assign each out-of-sample object to the nearest pseudo-centroid in Ct.

3. If t = 1, initialise V as the n× k binary membership matrix for C1.
Otherwise, update V as follows:

(i) Compute the current consensus clustering C̄ from V such that

xi ∈ C̄j if j = arg max
j

Vij

(ii) Find the optimal correspondence π(Ct) between the clusters in Ct and C̄.
(iii) For each object xi assigned to the j-th cluster in π(Ct), increment Vij .

4. Repeat from Step 2 until C̄ is stable or t = τmax.

5. Return the final consensus clustering C̄.

Figure 7.8: Kernel-based correspondence clustering algorithm.

As each subsequent clustering Ct is generated, the values in V are updated. Unlike when

combining voting classifiers, the clusters in each partition will not have a predefined label.

Therefore, each new set of clusters must be aligned with those that have been previously

generated. The current disjoint consensus clustering, denoted C̄, is computed by taking

the majority cluster label for each object, as determined by the maximum value in the as-

sociated row in V. The best match between the clusters in C̄ and the existing clusters in Ct

is then identified. Specifically, the optimal permutation π(Ct) may be found in O(k3) time

by solving the minimal weight bipartite matching problem using the Hungarian method

(Kuhn, 1955). For each object xi assigned to the j-th cluster in π(Ct), we increment the

entry Vij . When all ensemble members have been added, C̄ represents the final consensus

clustering of the data.

To illustrate the correspondence approach to integration, Figure 7.9 provides a simple

example where three base clusterings are generated on a set of five data objects for k =

2. After each base clustering is generated, the new clusters are mapped to the existing

consensus classes (C̄1, C̄2) and the 5× 2 membership matrix V is updated. Note that, for

the second and third iterations, the maximum row values in V are used to determine the

160



x2

x3

x4
x5

C1

C2

C3

x4

x3

x5

x4
x5

x2

x3

x3

x1

x1

x1

Base clustering Membership

C̄1 C̄2
x1 1.0 0.0
x2 1.0 0.0
x3 1.0 0.0
x4 0.0 1.0
x5 0.0 1.0

C̄1 C̄2
x1 1.0 0.0
x2 1.0 0.0
x3 0.5 0.5
x4 0.0 1.0
x5 0.0 1.0

C̄1 C̄2
x1 1.0 0.0
x2 0.6̇ 0.3̇
x3 0.6̇ 0.3̇
x4 0.0 1.0
x5 0.0 1.0

1

Mapping

π(C2) = {C̄2,C̄1}

π(C3) = {C̄1,C̄2}

C1 ≡ {C̄1,C̄2}

Figure 7.9: Example illustrating three iterations of a correspondence-based ensemble
clustering procedure, when applied to a set of five data objects.

optimal permutations of the base clusters. For instance, after the third member is added

to the ensemble, thresholding V results in the hard clustering C̄ = {{x1, x2, x3}, {x4, x5}}.

Ensemble Size

An issue that is often overlooked in ensemble clustering is the choice of a suitable value

for the number of ensemble members τ . As discussed previously, if τ is too large, the

running time of the ensemble process will be prohibitive. On the other hand, if τ is too

small, it is likely that ensemble clustering will result in a solution that is little better than

that generated by the base clustering algorithm. A notable benefit of the correspondence

approach to ensemble clustering is that, by performing the integration process in parallel

with the generation phase, it is possible to readily determine an appropriate point at which

the ensemble process may be terminated. We propose to automatically stop generating

new ensemble members when the the cluster assignments in C̄ remain unchanged for a fixed

number of generations. The process will also be terminated if the number of members t

reaches a predefined maximum value τmax.

161



7.3.2 Efficient Ensemble Clustering

The ensemble clustering approach introduced in Section 7.3.1 allows each base cluster-

ing to be generated without referring back to the original feature space. However, for

larger datasets, the computational cost of applying τ executions of an algorithm requiring

O((βn)2) time may still be prohibitive. Clearly, decreasing the value of n would make

the ensemble process significantly less computationally expensive. We now generalise the

work described in Section 7.2, showing that the newly proposed kernel-based prototype

reduction technique can also be used to improve the efficiency of ensemble clustering.

To demonstrate the extent of the decrease in running time resulting from the use of

prototype reduction, we consider the example provided in Figure 7.10. This shows running

times for kernel k-means (averaged over 100 runs) when applied to the classic3 dataset.

To investigate the effect of n in this context, we applied the algorithm to samples drawn

randomly from the data, for various sampling ratios β ∈ [0.1, 1.0]. It is evident that,

as the sample size βn increases, the time required for algorithm execution, O((βn)2),

will also greatly increase. In contrast, applying kernel k-means to samples drawn from a

set of reduced prototypes (in this example, we use n′ = n/4 prototypes) requires far less

processing time, even as β → 1. This shows that the time required for aggregation methods

that which generate clusterings on many data samples can be dramatically reduced.

Motivated by these observations, we now propose an efficient ensemble clustering ap-

Figure 7.10: Plot of the average running time (in milliseconds) for kernel k-means when
applied to samples from the classic3 corpus, using a full and reduced kernel matrix.

162



Reduction Ensemble 
Clustering

Mapping

Full 
Kernel

Final 
Clustering

Reduced 
Kernel

Reduced 
Clustering

Figure 7.11: Workflow for the ensemble clustering process with prototype reduction.

proach that consists of three steps: apply prototype reduction, perform correspondence

clustering on the reduced representation and subsequently map the resulting aggregate

solution back to the original data. An outline of this process is illustrated in Figure 7.11.

Ensemble Clustering with Prototype Reduction

The initial reduction process follows that described in Section 7.2.3. Firstly, the original

n × n kernel matrix K is transformed to a condensed n′ × n′ matrix K′, where n′ = n
ρ

and ρ is a user-defined parameter controlling the reduction rate. Specifically, n extracted

prototypes may be potentially constructed by finding the mean of each object together

with its set of p nearest neighbours. From these, a subset of n′ < n prototypes are chosen

using a density-biased selection strategy. The matrix K′ may be directly constructed

from the affinity values in K without referring back to the original feature space. In

practice, we use a reduction rate of ρ = 4 and consider prototypes constructed from small,

homogeneous neighbourhoods (the number of nearest neighbours is set to p = 5), as these

parameter values worked well in the experimental evaluations described in Section 7.2.5.

Once the reduced kernel matrix has been constructed, ensemble clustering proceeds

as given in Figure 7.8. The application of proposed reduction results in a significant de-

crease in the computational cost of the ensemble process. When generating each ensemble

member, the cost of clustering is reduced to O((βn
ρ )2). In addition, the time required

to construct a cost matrix for the Hungarian matching method and the time needed to

update V are both decreased to O(n′).

After the ensemble process has terminated, the problem remains of deriving a final

clustering Ĉ of the original n data objects from the consensus clustering of reduced proto-

types C̄′. Motivated partially by the buckshot method (Cutting et al., 1992), we suggest

that an intuitive way of achieving this is to assign each original object xi to the nearest

163



1. Construct a full n× n kernel matrix K from the original data X .

2. Apply prototype reduction to form the n′ × n′ reduced kernel matrix K′.

3. Apply kernel-based correspondence clustering using K′ as described in Figure 7.8 to
produce a consensus clustering C̄′.

4. Produce a full clustering Ĉ of X by assigning a cluster label to each xi based on the
nearest cluster in C̄′.

5. Apply adjusted kernel k-means using Ĉ as an initial partition to produce a refined
final clustering of X .

Figure 7.12: Kernel-based correspondence clustering algorithm with prototype reduction.

centroid in C̄′. Just as each reduced prototype can be decomposed into a set of p + 1

original objects, we can also decompose the centroid of each reduced cluster into the mean

of all the original objects which form the reduced prototypes assigned to that cluster. In

practice, we can identify the nearest cluster based on values in the original kernel matrix

K and the list of nearest neighbours used to form the reduced prototypes. This mapping

of C̄′ to a clustering of the original data objects in X can be performed in time O(n′n).

To further improve the accuracy of this solution, we suggest a refinement procedure that

involves applying adjusted kernel k-means to Ĉ using the full matrix K. In practice, we

observe that this leads to a non-trivial increase in clustering accuracy, while typically

requiring very few reassignment iterations before convergence. The complete ensemble

process with prototype reduction is summarised in Figure 7.12.

7.3.3 Experimental Evaluation

In order to assess the newly proposed ensemble techniques, we conducted a comparison

on the set of real-world text datasets discussed in Section 5.2.1. The primary focus of our

evaluation was to consider the effects of applying prototype reduction prior to ensemble

clustering, in terms of accuracy, stability and running time. We compare three variations

of ensemble clustering:

COR-KM: Correspondence-based integration of clusterings generated by k-means on

the original feature space.

COR-AA: Correspondence-based integration of clusterings generated by adjusted ker-

nel k-means on a full normalised linear kernel matrix (see Figure 7.8).

164



COR-RED: Correspondence-based integration of clusterings generated by adjusted ker-

nel k-means on a reduced kernel matrix (see Figure 7.12).

For these experiments, we average the results over 25 trials. In each trial, we automatically

terminate the ensemble process after 30 stable iterations have elapsed or when τmax = 250

ensemble members have been generated. As a baseline comparison, we also examine

the two base clustering algorithms: k-means with cosine similarity (KM) and adjusted

kernel k-means using a normalised linear kernel (AA). In these latter experiments, we

performed random initialisation and averaged the results over 200 trials to compensate for

the inherent instability of both algorithms. In all cases, we set the number of clusters k

to correspond to the number of natural classes in the data.

Comparison of Algorithm Accuracy

Table 7.4 summarises the mean and standard deviation of the NMI scores for the five

clustering methods under consideration. On all datasets, the kernel-based ensemble tech-

niques lead to an improvement over both base clustering algorithms. These techniques

also performed at least as well as correspondence-based ensemble clustering using stan-

dard k-means on the original feature space (COR-KM), and frequently achieved higher

accuracy. We observe that the application of a diagonal dominance reduction technique,

which limits the influence of self-similarity, contributes to this improvement. In addition,

the results in Table 7.4 show that in several cases correspondence clustering after proto-

type reduction (COR-RED) lead to better results than clustering on the full kernel matrix

Dataset KM AA COR-KM COR-AA COR-RED
bbc 0.81 ± 0.08 0.85 ± 0.06 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00
bbcsport 0.73 ± 0.10 0.80 ± 0.08 0.87 ± 0.01 0.90 ± 0.00 0.89 ± 0.03
classic 0.70 ± 0.04 0.74 ± 0.02 0.69 ± 0.00 0.75 ± 0.00 0.75 ± 0.00
classic3 0.93 ± 0.08 0.94 ± 0.06 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00
cstr 0.69 ± 0.05 0.74 ± 0.04 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.03
ng17-19 0.41 ± 0.12 0.42 ± 0.13 0.47 ± 0.04 0.51 ± 0.05 0.55 ± 0.04
ng3 0.83 ± 0.10 0.84 ± 0.10 0.89 ± 0.00 0.90 ± 0.00 0.91 ± 0.00
reuters5 0.55 ± 0.07 0.59 ± 0.04 0.60 ± 0.00 0.61 ± 0.00 0.61 ± 0.01
reviews 0.56 ± 0.08 0.58 ± 0.05 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00
sports 0.62 ± 0.05 0.67 ± 0.06 0.66 ± 0.01 0.70 ± 0.02 0.69 ± 0.02

Table 7.4: Summary of NMI accuracy results for base and ensemble clustering methods,
when applied to real-world text datasets.

165



(COR-AA). We suggest that the use of neighbourhood centroids as prototypes allows the

production of a robust initial solution that may not be readily obtained by clustering on

the full dataset. The application of a subsequent refinement phase allows this solution

to be further improved, resulting in a more accurate final clustering. The accuracy of

the solutions produced using COR-RED was consistently higher than that achieved by

the standard partitional and hierarchical algorithms evaluated in Section 5.3 on the same

data. Only the min-max agglomerative algorithm with refinement provided comparable

results on certain datasets, although it is significantly more prone to the effects of outliers.

Both of the baseline techniques, KM and AA, exhibited considerable instability due

to the sensitivity of these algorithms to the choice of initial clusters, which is reflected in

the high standard deviation scores in Table 7.4. In contrast, the ensemble methods tend

to be far more robust, frequently producing identical or highly similar partitions. Only in

the case of the bbcsport and cstr datasets did the ensemble methods suffer any noticeable

degradation in stability due to prototype reduction. This is likely to be due to the small

size of the datasets, and we suggest that a higher number of ensemble members may be

appropriate when working with small text corpora. As the time required to generate each

member for small datasets is extremely low, this should not pose a significant problem in

practice.

Comparison of Algorithm Efficiency

Another important aspect of our evaluation was to assess the computational gains resulting

from prototype reduction. Table 7.5 provides a list of the mean running times for the

ensemble clustering experiments, which were performed on an Intel Pentium IV 3.4GHz,

2GB RAM running Sun Java 1.5. The cost of the mapping and refinement procedures

in COR-RED has the effect that the computational savings are not as dramatic as those

observed in the experiments performed in Section 7.2.5. However, the gains afforded by

working on a reduced kernel matrix are still very significant. Only in the case of the

classic dataset did reduction fail to significantly reduce computational cost relative to the

other ensemble techniques. Note that the application of the early termination technique for

correspondence clustering also has a significant influence on the running times in Table 7.5.

We note that it is possible to further reduce the computational time of ensemble

generation by using a smaller factor for subsampling (e.g.β = 0.4). However, as discussed

by Minaei-Bidgoli et al. (2004), a critical sampling size for a given dataset is required to

166



Dataset COR-KM COR-AA COR-RED
bbc 95 215 13
bbcsport 27 34 1
classic 101 6181 157
classic3 32 359 26
cstr 7 14 1
ng17-19 85 753 40
ng3 57 485 19
reuters5 40 395 26
reviews 281 1722 81
sports 968 17954 579

Table 7.5: Comparison of the mean running times (in seconds) for ensemble clustering
methods, when applied to real-world text datasets.

match the accuracy afforded by more expensive bootstrapping strategies. We examined

this possibility, but found that, for a number of datasets, using smaller samples lead to

a less accurate consensus clustering and higher instability. Consequently, we suggest that

using prototype reduction with a relatively high sampling rate (e.g.β = 0.8) represents

a pragmatic choice for providing sufficient diversity and ensuring stability on a range of

datasets.

7.3.4 Summary

In this section, we have proposed an efficient approach for ensemble clustering based on

the use of kernel learning methods and density-biased prototype reduction. This approach

was evaluated on real-world text corpora, where the reduced ensemble clustering process

was shown to frequently afford a significant decrease in running time, while maintain-

ing high clustering accuracy. In several cases, the proposed method out-performed more

computationally costly ensemble techniques operating on the original data.

While we have applied prototype reduction in conjunction with a correspondence clus-

tering scheme modelled on that proposed by Dudoit & Fridlyand (2003), kernel-based

prototype reduction may also be employed in conjunction with other integration schemes,

such as those based on analysing pairwise co-assignments or a graph representation of an

ensemble. The modular nature of our approach naturally lends itself to applications in

other learning problems, where alternative domain-specific kernel functions may be used.

In addition, we suggest that it may be possible to combine the ensemble methods described

167



in this section with the stability analysis approach proposed in Section 7.2. By analysing

the stability of the cluster correspondence model as represented by the membership matrix

V, it would be possible to perform clustering and model selection simultaneously. Once

again, the application of prototype reduction would make such a procedure feasible when

working with large datasets.

168



Chapter 8

Conclusions

8.1 Introduction

Document clustering has been widely used as a tool for knowledge discovery and data

exploration by researchers working with large collections of unstructured text. While a

substantial body of literature exists in this area, a number of fundamental issues have

remained unresolved. When applying document clustering methods in practice, scala-

bility and performance issues arise due to the number of documents in a collection and

the dimensionality of the model used to represent them. The complex nature of cluster

structures in this type of data, which often take the form of overlapping groups of un-

balanced size, can make the clustering task significantly more difficult. In this thesis, we

have investigated a range of practical issues that affect the performance of cluster analysis

procedures, and proposed novel solutions that are designed for use on text corpora.

8.1.1 Thesis Summary

Chapter 2 provided a comprehensive review of both classical and contemporary clustering

algorithms, which are relevant when working with text data. This included a discussion of

the impact of the so-called curse of dimensionality on the performance of many common

algorithms, and a study of techniques that may be applied to reduce the number of di-

mensions required to represent documents. Once a clustering solution has been generated,

in many situations it will be useful to apply an automatic procedure to quantitatively

assess the validity of the solution. Chapter 3 surveyed a range of different approaches for

cluster validation, with a particular emphasis on the problem of choosing an appropriate

169



clustering model for a given dataset.

Chapter 4 introduced the Text Clustering Toolkit (TCT), a state-of-the-art framework

designed to support the development of applications for unsupervised text mining tasks. In

our own research, this toolkit has proved invaluable in allowing us to perform comparative

evaluations of existing techniques, and providing a flexible test-bed for the formulation of

novel analysis procedures.

Chapter 5 provided a detailed comparison of the performance of classical clustering

algorithms and validation methods when applied to text data. We examined the limi-

tations of these procedures, highlighting situations where they perform poorly. We also

introduced two new benchmark datasets for document clustering, the bbc and bbcsport

collections, which have proved highly useful in our empirical evaluations.

In Chapter 6, we proposed novel techniques for improving the performance of re-

cently developed clustering approaches when applied to text data. Section 6.2 presented

a number of algorithms based on spectral dimension reduction, which produce soft co-

clusterings of both documents and terms. Experiments performed on high-dimensional

text data show that, in particular, the KSSC and RSSC algorithms can produce clus-

tering solutions which are frequently more accurate than those generated by traditional

document clustering methods. Section 6.2.5 described complimentary techniques for gen-

erating meaningful cluster labels. Notably, it was demonstrated that well-known criteria

from supervised feature selection can be employed to produce highly discriminative la-

bels. In Section 6.3 we shifted our focus to kernel learning methods, where we explored

the effects of diagonal dominance, a phenomenon which can impair the performance of

centroid-based algorithms when applied to text data. A number of strategies were pro-

posed to address this issue, which lead to higher accuracy and stability in experiments

performed on real-world corpora.

Chapter 7 examined the idea of aggregating information obtained from multiple clus-

terings generated on the same dataset. While this can provide additional insight regarding

the underlying structure of a dataset, we observed that the computational cost of common

procedures based on this idea can often be prohibitive when working with large document

collections. To address this scalability problem, we suggested the application of proto-

type reduction, thereby rendering aggregation procedures more feasible for use on text

data. Specifically, in Section 7.2 we proposed a novel kernel-based prototype reduction

strategy, which produces a smaller set of representative objects that accurately summarise

170



the natural structures in a dataset. This strategy was employed as part of an efficient

scheme for prediction-based validation, with the effect that running time was substan-

tially reduced, without impairing the scheme’s ability to correctly estimate the number of

clusters. Subsequently, in Section 7.3 we demonstrated that the scalability of ensemble

clustering techniques can also be improved by employing kernel-based prototype reduction,

without any loss in clustering accuracy.

8.2 Thesis Findings

The major theoretical and empirical findings of this thesis can be summarised as follows:

• Classical approaches to document clustering, such as the generalised k-means algo-

rithm and agglomerative hierarchical clustering, are prone to producing inaccurate

and inconsistent solutions when applied to high-dimensional text data. The accu-

racy of the latter can be improved by employing a partitional refinement procedure

to correct erroneous cluster assignments.

• While spectral clustering methods have previously focused on generating disjoint

partitions, these methods can be adapted to produce soft clusterings of both doc-

uments and terms. The resulting co-clusterings often achieve significantly higher

accuracy than that afforded by existing algorithms based on matrix decomposition.

• Well-known supervised feature selection criteria, such as Information Gain and the

χ2 measure, can be used to identify highly discriminative terms when generating

human-interpretable cluster labels.

• The phenomenon of diagonal dominance, which causes overfitting in kernel classifiers,

also impacts upon the performance of centroid-based kernel clustering algorithms.

This is particularly problematic for kernel matrices representing sparse data, such as

text corpora. The application of strategies to reduce these effects can alter algorithm

reassignment behaviour, leading to a non-trivial increase in accuracy and stability.

• The efficiency of information aggregation procedures can be substantially improved

by applying prototype reduction to minimise the number of objects required to

represent the data. By ensuring that the new prototypes provide a true proxy for

the original dataset, running times can be greatly reduced without any noticeable

171



loss in algorithm performance. Consequently, procedures such as those based on

stability analysis and ensemble clustering can be rendered practical for use on large

text corpora.

• Prediction-based validation methods provide a robust means of identifying the cor-

rect number of groups in a collection of documents, consistently leading to better

estimates than those produced by many well-known validation techniques.

• Correspondence-based ensemble clustering can be used to improve the accuracy and

stability of standard clustering algorithms. By employing kernel methods in this

context, an ensemble can be constructed in a modular manner that is independent

of the original representation of the data.

8.3 Future Work

Following the work presented in this thesis, we now highlight several promising directions

for future research.

8.3.1 Toolkit Expansion

With TCT, we have largely focused on providing a comprehensive underlying framework,

together with a set of implementations for popular cluster analysis procedures. A natural

progression would be to add visualisation capabilities to TCT to further aid researchers in

the interpretation of large datasets and clustering solutions generated on those datasets.

We believe that the dimension reduction functionality currently supported by the core

learning library provides a suitable basis for the development of these capabilities. In

addition, to provide non-technical users with access to the functionality of the toolkit, we

envisage the development of a web-based or graphical front-end. The generic nature of

the architecture of TCT readily facilities the creation of alternative interfaces above the

core libraries described in Section 4.2.

8.3.2 Semi-supervised Learning

Recently, an increasing amount of attention has been paid to the problem of applying al-

gorithms in scenarios that do not perfectly correspond to the existing distinction between

supervised and unsupervised learning problems (Chapelle et al., 2006). It is apparent

172



that, for many real-world tasks, a limited degree of supervision may be available when

performing exploratory data analysis. This may not necessarily correspond to the tra-

ditional notion of a subset of labelled training examples. For instance, the supervision

could be derived from user feedback regarding the relations between pairs of objects in a

small subset of a given dataset. We can represent this information as a set of pairwise

constraints, where each constraint indicates that a pair of objects should either always be

assigned to the same cluster or should never be assigned to the same cluster. This form

of supervision can be used to guide a traditional clustering algorithm, either by providing

a good set of initial clusters (Basu et al., 2002), by using a “learnable” similarity function

that adapts based on a small amount of label information, or by modifying the objective

function of the algorithm to incorporate constraint information (Bilenko, 2003).

Cohn et al. (2003) tentatively explored the possibility of employing limited user feed-

back to guide a traditional clustering algorithm in order to produce a superior partition of

a document collection. We believe that significant potential exists to develop these tech-

niques. For example, by presenting a user with pairs of documents representing potential

boundary cases, it may be possible to achieve higher accuracy than that afforded by purely

unsupervised algorithms. When employing semi-supervised methods, work by Xu et al.

(2005) has shown that the selection of appropriate constraints can play a pivotal role in

determining the level of improvement in accuracy. We believe that clustering aggregation

methods, similar to those described in Chapter 7, may be useful in this context. For

instance, it may be possible to identify pairs of documents whose co-assignments are in-

consistent over many runs of a clustering algorithm. We suggest that the modular nature

of the TCT libraries makes it a useful starting point for work in the area of semi-supervised

learning.

8.3.3 Applications in Other Domains

While our focus in this thesis has been on the general task of document clustering, we

expect that many of the novel techniques proposed here will also be applicable in unsuper-

vised learning problems arising in other domains. In particular, we believe that there is

significant scope for applying the aggregation methods described in Chapter 7 to improve

the effectiveness and efficiency of knowledge discovery procedures in areas such as gene

expression analysis and image processing, where large datasets have previously made the

use of similar techniques unfeasible.

173



Bibliography

Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan, P. (1998). Automatic subspace clus-

tering of high dimensional data for data mining applications. In Proc. ACM SIGMOD

International Conference on Management of Data, 94–105.

Aizerman, M., Braverman, E. & Rozonoer, L. (1964). Theoretical foundations of the poten-

tial function method in pattern recognition learning. Automation and Remote Control ,

25, 821–837.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions

on Automatic Control , 716–723.

Basu, S., Banerjee, A. & Mooney, R.J. (2002). Semi-supervised clustering by seeding. In

Proc. 19th International Conference on Machine Learning (ICML’02), 27–34.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour . Princeton University

Press.

Ben-Hur, A., Elisseeff, A. & Guyon, I. (2002). A stability based method for discovering

structure in clustered data. In Proc. 7th Pacific Symposium on Biocomputing , 6–17.

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York.

Bezdek, J.C. & Kuncheva, L. (2001). Nearest prototype classifier designs: An experimental

study. International Journal of Intelligent Systems, 16, 1445–1473.

Bezdek, J.C. & Pal, N.R. (1995). Cluster validation with generalized dunn’s indices. In

Proc. 2nd New Zealand Two-Stream International Conference on Artificial Neural Net-

works and Expert Systems, 190.

174



Bilenko, M. (2003). Learnable similarity functions and their applications to record link-

age and clustering. Tech. rep., Department of Computer Science, University of Texas,

Austin.

Bingham, E. & Mannila, H. (2001). Random projection in dimensionality reduction: ap-

plications to image and text data. In Proc. 7th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining , 245–250.

Boley, D. (1998). Principal direction divisive partitioning. Data Mining and Knowledge

Discovery , 2, 325–344.

Bolshakova, N. & Azuaje, F. (2002). Cluster validation techniques for genome expression

data. Tech. Rep. 2002-33, Dept. Computer Science, Trinity College Dublin.

Brand, M. & Huang, K. (2003). A unifying theorem for spectral embedding and clustering.

In Proc. 9th International Workshop on AI and Statistics.

Breiman, L. (1996). Bagging predictors. Machine Learning , 24, 123–140.

Brodley, C. & Lane, T. (1996). Creating and exploiting coverage and diversity. In Proc.

AAAI Workshop on Integrating Multiple Learned Models, 8–14, Portland, Oregon.

Brunet, J.P., Tamayo, P., Golub, T.R. & Mesirov, J.P. (2004). Metagenes and molecular

pattern discovery using matrix factorization. Proceedings of the National Academy of

Sciences, 101, 4164–4169.

Calinski, T. & Harabasz, J. (1974). A dendrite method for cluster analysis. Communica-

tions in Statistics, 3, 1–27.

Cancedda, N., Gaussier, E., Goutte, C. & Renders, J.M. (2003). Word sequence kernels.

Journal of Machine Learning Research, 3, 1059–1082.

Chan, P.K., Schlag, M.D.F. & Zien, J.Y. (1994). Spectral K-way ratio-cut partitioning

and clustering. IEEE Transactions on Computer-aided Design of Integrated Circuits

and Systems, 13, 1088–1096.

Chapelle, O., Schölkopf, B. & Zien, A., eds. (2006). Semi-Supervised Learning . MIT Press,

Cambridge.

175



Cohn, D., Caruana, R. & McCallum, A. (2003). Semi-supervised clustering with user

feedback. Tech. rep., Cornell University.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing ,

36, 287–314.

Creator, R., Kaufman, L., Source, R. & Zentralblatt, M. (1984). K-means-type algo-

rithms: A generalized convergence theorem and characterization of local optimality.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 81–87.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines.

Cambridge University Press.

Cutting, D.R., Pedersen, J.O., Karger, D. & Tukey, J.W. (1992). Scatter/Gather: A

Cluster-based Approach to Browsing Large Document Collections. In Proc. 15th Annual

International Conference on Research and Development in Information Retrieval , 318–

329.

Dalamagas, T., Cheng, T., Winkel, K. & Sellis, T. (2004). Clustering XML Documents by

Structure. In Proc. 3rd Hellenic Conference on Artificial Intelligence.

Dash, M. & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis,

15.

Dash, M. & Liu, H. (2000). Feature selection for clustering. In Proc. Pacific-Asia Confer-

ence on Knowledge Discovery and Data Mining (PAKDD’00), 110–121, Springer.

Davies, D.L. & Bouldin, W. (1979). A cluster separation measure. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1, 224–227.

Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W. & Harshman, R.A. (1990).

Indexing by latent semantic analysis. Journal of the American Society of Information

Science, 41, 391–407.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society , 39, 1–38.

Dhillon, I., Guan, Y. & Kulis, B. (2004a). A unified view of kernel k-means, spectral

clustering and graph cuts. Tech. Rep. TR-04-25, UTCS.

176



Dhillon, I.S. (2001). Co-clustering documents and words using bipartite spectral graph

partitioning. In Knowledge Discovery and Data Mining , 269–274.

Dhillon, I.S. & Modha, D.S. (2001). Concept decompositions for large sparse text data

using clustering. Machine Learning , 42, 143–175.

Dhillon, I.S., Guan, Y. & Kogan, J. (2002a). Iterative clustering of high dimensional

text data augmented by local search. In Proc. IEEE International Conference on Data

Mining (ICDM’02).

Dhillon, I.S., Kogan, J. & Nicholas, M. (2002b). Feature selection and document clustering.

Survey of Text Mining , 73–100.

Dhillon, I.S., Guan, Y. & Kulis, B. (2004b). Kernel k-means: spectral clustering and

normalized cuts. In Proc. 2004 ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining , 551–556.

Dimitriadou, E., Weingessel, A. & Hornik, K. (2002). A combination scheme for fuzzy

clustering. International Journal of Pattern Recognition and Artificial Intelligence, 16,

901–912.

Ding, C. & He, X. (2002). Cluster merging and splitting in hierarchical clustering algo-

rithms. In Proc. IEEE International Conference on Data Mining (ICDM’02), 139.

Ding, C. & He, X. (2004). K-nearest-neighbor consistency in data clustering: incorporat-

ing local information into global optimization. In Proc. ACM Symposium on Applied

Computing (SAC’04), 584–589.

Ding, C. & He, X. (2005). On the Equivalence of Non-negative Matrix Factorization

and Spectral Clustering. In Proc. SIAM International Conference on Data Mining

(SDM’05).

Ding, C., He, X., Zha, H., Gu, M. & Simon, H. (2001). Spectral min-max cut for graph

partitioning and data clustering. In Proc. 1st IEEE International Conference on Data

Mining , 107–114.

Donath, W. & Hoffman, A. (1973). Lower bounds for the partitioning of graphs. IBM

Journal of Research and Developement , 17, 420–425.

177



Drucker, H., Wu, D. & Vapnik, V. (1999). Support Vector Machines for Spam Categoriza-

tion. IEEE Transactions on Neural Networks, 10, 1048–1054.

Dubes, R.C. (1987). How many clusters are best? - an experiment. Pattern Recognition,

20, 645–663.

Dudoit, S. & Fridlyand, J. (2002). A prediction-based resampling method for estimating

the number of clusters in a dataset. Genome Biology , 3, 1–21.

Dudoit, S. & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering proce-

dure. Bioinformatics, 19, 1090–1099.

Dunn, J.C. (1974a). A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, 3, 32–57.

Dunn, J.C. (1974b). Well separated clusters and optimal fuzzy-partitions. Journal of Cy-

bernetics, 4, 95–104.

Dy, J.G. & Brodley, C.E. (2000). Feature subset selection and order identification for

unsupervised learning. In Proc. 17th International Conference on Machine Learning

(ICML’00), 247–254, Morgan Kaufmann, San Francisco, CA.

Fern, X. & Brodley, C. (2004). Solving cluster ensemble problems by bipartite graph

partitioning. In Proc. 21st International Conference on Machine Learning (ICML’04).

Fern, X.Z. & Brodley, C.E. (2003). Random projection for high dimensional data cluster-

ing: A cluster ensemble approach. In Proc. 20th International Conference on Machine

Learning (ICML’03), Washington.

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal ,

23, 298–305.

Fischer, B. & Buhmann, J.M. (2003). Path-based clustering for grouping of smooth curves

and texture segmentation. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 25, 513–518.

Forgy, E.W. (1965). Cluster analysis of multivariate data: efficiency vs interpretability of

classifications. Biometrics, 21, 768–769.

178



Fowlkes, E. & Mallow, C. (1983). A method for comparing two hierarchical clusterings.

Journal of the American Statistical Association, 78, 553–569.

Fred, A. (2001). Finding consistent clusters in data partitions. In Proc. 2nd International

Workshop on Multiple Classifier Systems (MCS’01), vol. 2096, 309.

Frederix, G. & Pauwels, E.J. (2004). Shape-invariant cluster validity indices. Lecture Notes

in Computer Science, 3275, 96–105.

Ghosh, J. (2003). Scalable clustering methods for data mining. In N. Ye, ed., Handbook of

Data Mining , chap. 10, Lawrence Erlbaum.

Ghosh, J., Strehl, A. & Merugu, S. (2002). A consensus framework for integrating dis-

tributed clusterings under limited knowledge sharing. In Proc. NSF Workshop on Next

Generation Data Mining , 99–108.

Giurcaneanu, C. & Tabus, I. (2004). Cluster structure inference based on clustering stabil-

ity with applications to microarray data analysis. EURASIP Journal on Applied Signal

Processing , 1, 64–80.

Greene, D. & Cunningham, P. (2005). Producing accurate interpretable clusters from

high-dimensional data. In A. Jorge, L. Torgo, P. Brazdi, R. Camacho & J. Gama, eds.,

Proc. 9th European Conference on Principles and Practice of Knowledge Discovery in

Databases (PKDD’05), 486–494, Springer.

Greene, D., Tsymbal, A., Bolshakova, N. & Cunningham, P. (2004). Ensemble clustering

in medical diagnostics. In Proc. 17th IEEE Symposium on Computer-Based Medical

Systems (CBMS’04), 576–581, IEEE Computer Society.

Guha, S., Rastogi, R. & Shim, K. (1998). CURE: an efficient clustering algorithm for large

databases. In Proc. ACM SIGMOD International Conference on Management of Data,

73–84.

Gusfield, D. (2002). Partition-distance: A problem and class of perfect graphs arising in

clustering. Information Processing Letters, 82, 159–164.

Hall, K.M. (1970). An r-dimensional quadratic placement algorithm. Managment Science,

17, 219–229.

179



Hamamoto, Y., Uchimura, S. & Tomita, S. (1997). A bootstrap technique for nearest

neighbor classifier design. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 19, 73–79.

Hamerly, G. & Elkan, C. (2004). Learning the k in k-means. In S. Thrun, L. Saul &

B. Schölkopf, eds., Advances in Neural Information Processing Systems 16 , MIT Press,

Cambridge, MA.

Hautamäki, V., Cherednichenko, S., Kärkkäinen, I., Kinnunen, T. & Fränti, P. (2005).

Improving k-means by outlier removal. In Proc. 14th Scandinavian Conference on Image

Analysis (SCIA’05), 978–987.

Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20, 832–844.

Hochbaum, D.S. & Shmoys, D.B. (1985). A best possible heuristic for the k-center problem.

Mathematics of Operations Research, 10, 180–184.

Hubert, L. & Levin, J. (1976). A general statistical framework for accessing categorical.

Psychological Bulletin, 83, 1072–1082.

Hubert, L.J. & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2,

193–218.

Jaccard, P. (1912). The distribution of flora in the alpine zone. New Phytologist , 11, 37–50.

Jain, A.K. & Dubes, R.C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

Jain, A.K. & Fred, A. (2002a). Data clustering using evidence accumulation. In Proc. 16th

International Conference on Pattern Recognition (ICPR’02), vol. 4, 276–280.

Jain, A.K. & Fred, A. (2002b). Evidence accumulation clustering based on the k-means

algorithm. Structural, Syntactic, and Statistical Pattern Recognition, LNCS 2396, 442–

451.

Jardine, N. & van Rijsbergen, C.J. (1971). The use of hierarchical clustering in information

retrieval. Information Storage and Retrieval , 7, 217–240.

180



John, G.H., Kohavi, R. & Pfleger, K. (1994). Irrelevant features and the subset selection

problem. In Proc. 11th International Conference on Machine Learning (ICML’94), 121–

129, Morgan Kaufmann, New Brunswick, NJ.

Juan, A. & Vidal, E. (2000). Comparison of four initialization techniques for the k-medians

clustering algorithm. In Proc. Joint IAPR International Workshops on Advances in

Pattern Recognition, 842–852, Springer-Verlag, London, UK.

Karypis, G. & Han, E.H. (2000). Fast supervised dimensionality reduction algorithm with

applications to document categorization and retrieval. In Proc. 9th ACM International

Conference on Information and Knowledge Management , 12–19, ACM Press.

Katsavounidis, I., Jay Kuo, C.C. & Zhang, Z. (1994). A new initialization technique for

generalized Lloyd iteration. IEEE Signal Processing Letters, 1, 144–146.

Kernighan, B.W. & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.

The Bell System Technical Journal , 49, 291–308.

Kim, S.W. & Oommen, B.J. (2005). On using prototype reduction schemes and classifier

fusion strategies to optimize kernel-based nonlinear subspace methods. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 27, 455–460.

Kluger, Y., Basri, R., Chang, J. & Gerstein, M. (2003). Spectral Biclustering of Microarray

Data: Coclustering Genes and Conditions. Genome Research, 13, 703–716.

Kollios, G., Gunopulos, D., Koudas, N. & Berchtold, S. (2003). Efficient biased sampling

for approximate clustering and outlier detection in large datasets. IEEE Transactions

on Knowledge and Data Engineering , 15.

Kruengkrai, C., Sornlertlamvanich, V. & Isahara, H. (2004). Document clustering using

linear partitioning hyperplanes and reallocation. In Proc. Asia Information Retrieval

Symposium (AIRS’04), 36–47.

Kuhn, H.W. (1955). The hungarian method for the assignment problem. Naval Research

Logistics Quaterly , 2, 83–97.

Kummamuru, K., Dhawale, A. & Krishnapuram, R. (2003). Fuzzy co-clustering of docu-

ments and keywords. In Proc. 12th IEEE International Conference on Fuzzy Systems,

vol. 2, 772–777.

181



Lafferty, J. & Lebanon, G. (2004). Diffusion kernels on statistical manifolds. Tech. Rep.

CMU-CS-04-101, Dept. Computer Science, Carnegie Mellon University.

Lange, T., Roth, V., Braun, M.L. & Buhmann, J.M. (2004). Stability-based validation of

clustering solutions. Neural Computation, 16, 1299–1323.

Larsen, B. & Aone, C. (1999). Fast and effective text mining using linear-time document

clustering. In Proc. 5th ACM SIGKDD International Conference on Knowledge discov-

ery and Data Mining (KDD’99), 16–22, ACM Press, New York, NY, USA.

Lau, H.F. & Levine, M.D. (2002). Finding a small number of regions in an image using

low-level features. Pattern Recognition, 35, 2323–2339.

Law, M. & Jain, A.K. (2003). Cluster validity by bootstrapping partitions. Tech. Rep.

MSU-CSE-03-5, University of Washington.

Lee, D.D. & Seung, H.S. (1999). Learning the parts of objects by non-negative matrix

factorization. Nature, 401, 788–91.

Lee, S.H. & Daniels, K. (2005). Gaussian kernel width selection and fast cluster labeling

for support vector clustering. Tech. Rep. 2005-009, Dept. Computer Science, University

of Massachusetts Lowell.

Lehoucq, R.B., Sorensen, D.C. & Yang, C. (1997). ARPACK Users’ Guide. Solution of

large eigenvalue problems with implicitly restarted Arnoldi methods. SIAM.

Leisch, F. (1999). Bagged clustering. Working Paper 51, SFB “Adaptive Information Sys-

tems and Modeling in Economics and Management Science”.

Levine, E. & Domany, E. (2001). Resampling method for unsupervised estimation of clus-

ter validity. Neural Computation, 13, 2573–2593.

Li, S.Z., Hou, X.W., Zhang, H. & Cheng, Q. (2001). Learning spatially localized, parts-

based representation. In Proc. Computer Vision and Pattern Recognition (CVPR’01),

vol. 1, 207.

Liu, T., Liu, S., Chen, Z. & Ma, W.Y. (2003a). An evaluation on feature selection for

text clustering. In T. Fawcett & N. Mishra, eds., Proc. 20th International Conference

on Machine Learning (ICML’03), 488–495, AAAI Press.

182



Liu, W., Zheng, N. & Lu, X. (2003b). Non-negative matrix factorization for visual coding.

In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’03), vol. 3, 293–296.

Liu, X., Gong, Y., Xu, W. & Zhu, S. (2002). Document clustering with cluster refinement

and model selection capabilities. In Proc. 25th International ACM SIGIR Conference on

Research and Development in Information Retrieval , 191–198, ACM Press New York,

NY, USA.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. & Watkins, C. (2002). Text

classification using string kernels. Journal of Machine Learning Research, 2, 419–444.

MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate ob-

servations. In Proc. 5th Berkeley Symposium on Math, Statistics, and Probability , vol. 1,

281–297, University of California Press.

Meila, M. (2002). Comparing clusterings. Tech. Rep. 418, University of Washington.

Milligan, G. & Cooper, M. (1985). An examination of procedures for determining the

number of clusters in a data set. Psychometrika, 50, 159–179.

Minaei-Bidgoli, B., Topchy, A.P. & Punch, W.F. (2004). A Comparison of Resampling

Methods for Clustering Ensembles. In Proc. International Conference on Artificial In-

telligence (IC-AI’04), vol. 2, 939–945.

Monti, S., Tamayo, P., Mesirov, J. & Golub, T. (2003). Consensus clustering: A

resampling-based method for class discovery and visualization of gene expression mi-

croarray data. Machine Learning Journal , 52, 91–118.

Ng, A., Jordan, M. & Weiss, Y. (2001). On Spectral Clustering: Analysis and an Algo-

rithm. Advances in Neural Information Processing , 14, 849–856.

Ng, R. & Han, J. (1994). Efficient and effective clustering methods for spatial data mining.

Proc. 20th International Conference on Very Large Data Bases, 144–155.

Opitz, D.W. & Shavlik, J.W. (1996). Generating accurate and diverse members of a neural-

network ensemble. Advances in Neural Information Processing Systems, 8, 535–541.

183



Palmer, C.R. & Faloutsos, C. (2000). Density biased sampling: an improved method for

data mining and clustering. In Proc. SIGMOD International Conference on Management

of Data, 82–92.

Park, L., Palaniswami, M. & Ramamohanarao, K. (2004). Fourier domain scoring: A novel

document ranking method. IEEE Transactions on Knowledge and Data Engineering ,

16, 529–539.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The

London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Sixth

Series, 2, 559–572.

Pelleg, D. & Moore, A. (2000). X-means: Extending k-means with efficient estimation of

the number of clusters. In Proc. 17th International Conference on Machine Learning

(ICML’00), 727–734.

Porter, M. (1980). An algorithm for suffix stripping. Program, 14, 130–137.

Pothen, A., Simon, H.D. & Liou, K.P. (1990). Partitioning sparse matrices with eigenvec-

tors of graphs. SIAM Journal of Mathematical Analysis and Applications, 11, 430–452.

Punj, G. & Stewart, D. (1983). Cluster analysis in marketing research: Review and sug-

gestions for applications. Journal of Marketing Research, 20, 134–148.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning . Morgan Kaufmann, San

Mateo, CA.

Rand, W.M. (1971). Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66, 846–850.

Raychaudhuri, S., Stuart, J.M. & Altman., R.B. (2000). Principal components analysis to

summarize microarray experiments: application to sporulation time series. In Pacific

Symposium on Biocomputing , 455–466.

Rijsbergen, C. (1975). Information Retrieval . Butterworths.

Roth, V., Braun, M., Lange, T. & Buhmann, J. (2002). A resampling approach to cluster

validation. In Proc. 15th Symposium in Computational Statistics.

184



Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

Saigo, H., Vert, J.P., Ueda, N. & Akutsu, T. (2004). Protein homology detection using

string alignment kernels. Bioinformatics, 20, 1682–1689.

Salton, G. & Buckley, C. (1987). Term weighting approaches in automatic text retrieval.

Tech. Rep. 87-881, Department of Computer Science, Cornell University, Ithaca, NY,

USA.

Salton, G. & McGill, M.J. (1983). Introduction to Modern Retrieval . McGraw-Hill Book

Company.

Salton, G., Wong, A. & Yang, C.S. (1975). A vector space model for automatic indexing.

Communications of the ACM , 18, 613–620.

Schölkopf, B. & Smola, A.J. (2001). Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond . MIT Press, Cambridge, MA, USA.

Schölkopf, B., Smola, A. & Müller, K.R. (1998). Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10, 1299–1319.

Schölkopf, B., Weston, J., Eskin, E., Leslie, C. & Noble, W.S. (2002). A kernel approach

for learning from almost orthogonal patterns. In Proc. 13th European Conference on

Machine Learning (ECML’02), 511–528.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Sedding, J. & Kazakov, D. (2004). Wordnet-based text document clustering. In Proc.

3rd Workshop on Robust Methods in Analysis of Natural Language Data (ROMAND),

Geneva.

Shi, J. & Malik, J. (1997). Normalized cuts and image segmentation. In Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR ’97), 731–737.

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22, 888–905.

Sirovich, L. & Kirby, M. (1987). Low-dimensional procedure for the characterization of

human faces. Journal of the Optical Society of America A, 4, 519–524.

185



Steinbach, M., Karypis, G. & Kumar, V. (2000). A comparison of document clustering

techniques. In Proc. KDD Workshop on Text Mining .

Strehl, A. (2002). Relationship-based Clustering and Cluster Ensembles for High-

dimensional Data Mining . Ph.D. thesis, University of Texas, Austin.

Strehl, A. & Ghosh, J. (2002a). Cluster ensembles - a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.

Strehl, A. & Ghosh, J. (2002b). Cluster ensembles - a knowledge reuse framework for

combining partitionings. In Proc. Conference on Artificial Intelligence (AAAI’02), 93–

98, AAAI/MIT Press.

Strehl, A., Ghosh, J. & Mooney, R.J. (2000). Impact of similarity measures on web-page

clustering. In Proc. AAAI Workshop on AI for Web Search, 58–64, AAAI/MIT Press.

Surdeanu, M., Turmo, J. & Ageno, A. (2005). A hybrid unsupervised approach for docu-

ment clustering. In Proc. 11th ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining , 685–690, ACM Press, New York, NY, USA.

Tang, B., Shepherd, M., Milios, E. & Heywood, M. (2005). Comparing and combining di-

mension reduction techniques for efficient text clustering. In SIAM International Work-

shop on Feature Selection for Data Mining - Interfacing Machine Learning and Statis-

tics, Newport Beach, California.

Tao, Q., Scott, S., Vinodchandran, N.V., Osugi, T.T. & Mueller, B. (2004). An extended

kernel for generalized multiple-instance learning. In Proc. 16th IEEE International Con-

ference on Tools with Artificial Intelligence (ICTAI’04), 272–277.

Tibshirani, R., Walther, G. & Hastie, T. (2000). Estimating the number of clusters in a

dataset via the gap statistic. Tech. Rep. 208, Dept. Statistics, Stanford University.

Tibshirani, R., Walther, G., Botstein, D. & Brown, P. (2001). Cluster validation by pre-

diction strength. Tech. rep., Dept. Statistics, Stanford University.

Topchy, A., Jain, A. & Punch, W. (2005). Clustering ensembles: Models of consensus and

weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27,

1866–1881.

186



Torre, F.D.L. & Black, M.J. (2003). A framework for robust subspace learning. Interna-

tional Journal of Computer Vision, 54, 117–142.

Turnbull, D. & Elkan, C. (2005). Fast Recognition of Musical Genres Using RBF Networks.

IEEE Transactions on Knowledge and Data Engineering , 17, 580–584.

Verma, D. & Meila, M. (2003). A comparison of spectral clustering algorithms. Tech. rep.,

University of Washington.

Voorhees, E.M. (1986). The effectiveness and efficiency of agglomerative hierarchic clus-

tering in document retrieval . Ph.D. thesis, Cornell University.

Wu, G., Chang, E. & Zhang, Z. (2005). An analysis of transformation on non-positive

semidefinite similarity matrix for kernel machines. Tech. rep., UCSB.

Xu, Q., des Jardins, M. & Wagstaff, K.L. (2005). Active constrained clustering by exam-

ining spectral eigenvectors. In Proc. 8th International Conference on Discovery Science

(DS’05).

Yang, Y. & Pedersen, J.O. (1997). A comparative study on feature selection in text catego-

rization. In D.H. Fisher, ed., Proc. 14th International Conference on Machine Learning

(ICML’97), 412–420, Morgan Kaufmann Publishers, San Francisco, US, Nashville, US.

Yao, Z. & Choi, B. (2005). Automatically discovering the number of clusters in web page

datasets. In Proc. 2005 International Conference on Data Mining (DMIN’05), 3–9.

Yu, S.X. & Shi, J. (2003). Multiclass spectral clustering. In Proc. 9th IEEE International

Conference on Computer Vision, 313.

Zhang, T., Ramakrishnan, R. & Livny, M. (1996). BIRCH: an efficient data clustering

method for very large databases. Proc. 1996 ACM SIGMOD International Conference

on Management of Data, 103–114.

Zhao, Y. & Karypis, G. (2001). Criterion functions for document clustering: Experiments

and analysis. Tech. Rep. 01-040, University of Minnesota.

Zhao, Y. & Karypis, G. (2002). Evaluation of hierarchical clustering algorithms for doc-

ument datasets. In Proc. 11th ACM Conference on Information and Knowledge Man-

agement , 515–524.

187



Zhao, Y. & Karypis, G. (2004). Soft clustering criterion functions for partitional document

clustering: a summary of results. In Proc. 13th ACM Conference on Information and

Knowledge Management , 246–247.

Zhong, H., Shi, J. & Visontai, M. (2004). Detecting unusual activity in video. In Proc.

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04),

vol. 2, Washington, D.C., USA.

Zhong, S. (2005). Efficient online spherical k-means clustering. In Proc. 2005 IEEE Inter-

national Joint Conference on Neural Networks, vol. 5, 3180–3185.

188


