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Genome-wide epistatic expression quantitative
trait loci discovery in four human tissues reveals
the importance of local chromosomal interactions
governing gene expression
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Abstract

Background: Epistasis (synergistic interaction) among SNPs governing gene expression is likely to arise within
transcriptional networks. However, the power to detect it is limited by the large number of combinations to be
tested and the modest sample sizes of most datasets. By limiting the interaction search space firstly to cis-trans and
then cis-cis SNP pairs where both SNPs had an independent effect on the expression of the most variable
transcripts in the liver and brain, we greatly reduced the size of the search space.

Results: Within the cis-trans search space we discovered three transcripts with significant epistasis. Surprisingly, all
interacting SNP pairs were located nearby each other on the chromosome (within 290 kb-2.16 Mb). Despite their
proximity, the interacting SNPs were outside the range of linkage disequilibrium (LD), which was absent between
the pairs (r2 < 0.01). Accordingly, we redefined the search space to detect cis-cis interactions, where a cis-SNP was
located within 10 Mb of the target transcript. The results of this show evidence for the epistatic regulation of 50
transcripts across the tissues studied. Three transcripts, namely, HLA-G, PSORS1C1 and HLA-DRB5 share common
regulatory SNPs in the pre-frontal cortex and their expression is significantly correlated. This pattern of epistasis is
consistent with mediation via long-range chromatin structures rather than the binding of transcription factors in
trans. Accordingly, some of the interactions map to regions of the genome known to physically interact in
lymphoblastoid cell lines while others map to known promoter and enhancer elements. SNPs involved in interactions
appear to be enriched for promoter markers.

Conclusions: In the context of gene expression and its regulation, our analysis indicates that the study of cis-cis
or local epistatic interactions may have a more important role than interchromosomal interactions.
Background
Genome-wide studies of gene expression have success-
fully identified genetic variants that contribute to the
variation of gene expression within populations [1-11].
The objective of genome-wide association studies
(GWAS) is to map genotypic variation to phenotypic
variation. Jansen and Nap [12] proposed extending the
GWAS paradigm to deal with quantitative endopheno-
types, e.g. RNA, protein and metabolite abundance in a
cell. To date, consideration of RNA abundance has
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received most attention in the literature [1-11]. Those
variants that affect gene expression are referred to as
expression quantitative trait loci (eQTLs) of which
thousands have been reported [1-11]. Most studies have
focused on single nucleotide polymorphisms (SNPs).
The literature reports two classes of eQTL, cis-acting

SNPs and trans-acting SNPs. Cis-acting SNPs lie within
a gene or near the transcription start or stop site of a
gene and correlate with the expression of that gene. In
contrast, trans-acting SNPs can lie anywhere else in the
genome. Cis-acting variants are more numerous than
trans-acting variants but not necessarily more common
due to difficulties in detecting trans-SNPs related to
a larger search space [3-5]. Understanding of the
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mechanisms of action of expression polymorphisms de-
tected in GWAS is limited. Cis-acting variants may
affect the binding of the transcriptional machinery or
the stability of the transcript [6]. The mechanics of
trans-acting variants have proven more difficult to deter-
mine. Cheung et al. report that the majority of trans-
SNPs do not map to transcription factors or signaling
molecules [6]. More recently, SNPs implicated in disease
associations were shown to be enriched in enhancers
and microRNA binding sites [13].
As with the traditional GWAS, the focus in studies of

expression polymorphisms has been the detection of sin-
gle variants that function independently to affect gene
expression. However, consideration of single variants
alone typically explains only a small proportion of the
variance of a trait. This missing heritability is attributed
by some to the fact that genetic interactions (epistasis)
are generally ignored in mapping studies despite claims
that they are an ubiquitous feature of biological pro-
cesses [14-18]. In contrast to studies in model organisms
which have reported extensive epistasis [19,20], where
epistasis has been studied using GWAS, the results have
been few [21,22]. However, regardless of the percentage
contribution to heritability, epistatic interactions are of
intrinsic interest as they reveal aspects of regulatory net-
works that single SNPs do not identify.
The reasons for the relative absence of reported epista-

sis in the GWAS literature are twofold. Firstly, exhaust-
ive searches of all pairs of SNP-SNP interactions are
computationally expensive, e.g. a screen for all two-locus
interactions amongst 500,000 SNPs and 30,000 tran-
scripts would require 3.25 × 1015 statistical tests. More
importantly, the combinatorial explosion of even simple
pairwise interactions necessitates stringent correction
for multiple testing which eliminates all but the most
striking results. Inadequate correction for the search
space and reliance on assumptions of normality in gene
expression can lead to false inferences of epistasis where
none exists. In this study, we sought to avoid such prob-
lems by restricting the search space in the first place,
and then employing careful analyses, in particular avoid-
ing tests that assumed normality of the quantitative
RNA levels. While we do manage to reduce the search
space considerably, there remains substantial lack of
power to fully quantify the real extent of biologically im-
portant epistasis. Our study design is secondly limited
by the availability of only four tissue types analysed on a
similar platform. Nonetheless, by sampling a small frac-
tion of such epistatic effects, our approach provides in-
sights into the nature of epistasis governing RNA
expression in mammalian tissues.
We set out to discover epistasis affecting gene expres-

sion in the human liver and three brain tissues. To re-
duce the size of the search space, we initially considered
only variable transcripts and SNP pairs that had a cis
and trans effect on the same transcript. This approach
revealed a small number of statistically significant epi-
static intrachromosomal effects and no interchromo-
somal effects. As a follow on, we redefined the search
space to consider only cis-cis interactions. In this more
focused search, we discovered a greater number of in-
teractions affecting a greater number of transcripts,
suggesting the importance of cis-cis epistasis in tran-
scriptional regulation.

Results and discussion
Genetic interactions in four human tissues
We implemented two search space strategies to detect
epistatic eQTLs in the four tissues. The first strategy
considered cis-trans interactions and the second strategy
considered cis-cis interactions. In both cases, the criteria
for testing a pairwise interaction required that the ex-
pression phenotype of a gene have both a cis-eQTL and
a trans-eQTL or two cis-eQTLs, depending on the
search space, at a liberal false discovery rate (FDR < 0.5).
We excluded interacting SNP pairs in linkage disequilib-
rium by requiring that they have an r2 < 0.01. Addition-
ally, we required that each of the nine genotypic
combinations resulting from consideration of a pairwise
interaction have an arbitrary minimum sample size of
10. A summary for the work flow for the cis-trans strat-
egy is given in Figure 1.

Cis-trans interactions
For the four tissues, namely, the liver, pre-frontal cortex,
cerebellum and visual cortex, 1,819, 14,226, 11,562 and
4,257 tests for interaction were conducted. The differing
number of tests for each tissue is partly explained by the
differences in sample sizes for liver, visual cortex, cere-
bellum and pre-frontal cortex, i.e. 403, 403, 489 and 576
respectively. The other identifiable cause for such a
difference is that the liver SNPs were genotyped on dif-
ferent arrays to the brain tissues. Three of the four tis-
sues considered had epistatic eQTLs significant after
Bonferroni correction ( α < 0.05), 3 in the liver, 15 in
the pre-frontal cortex and 2 in the cerebellum at
thresholds of p < 2.75 × 10−5, p < 3.51 × 10−6 and p <
4.32 × 10−6, respectively (Table 1). The interactions re-
ported regulate an unannotated transcript on chromo-
some 5 and two histocompatibility genes, HLA-G and
HLA-DRB5 on chromosome 6. HLA-G is under epi-
static regulation in both the liver and the pre-frontal
cortex. Fitting the two main effects in the absence of an
interaction term explains 7.2% - 31.10% of the phenotypic
variance. When the interaction term is included, 10.6% -
33.8% of the phenotypic variance is explained with the
interaction term accounting for an additional 2.8% - 5.4%
of the variance. Adjusted r2 for the main effect models,



Figure 1 Quality control filtering and cis-trans search space
reduction of Interactions in the pre-frontal cortex. Prior to main
effect calculation, SNPs and the RNA probe sets underwent filtering
for quality control. Cis- and trans-SNPs that had an independent
effect on the abundance of RNA as measured on a micorarray were
tested for epistatic effects on the abundance of that RNA. Only pairs
of SNPs that were interchromosomal or not in linkage disequilibrium
were considered. Additionally, for each of the nine genotypic
combinations resulting from a pairwise interaction, only pairs that
had a minimum sample size of ten individuals for each genotype
were considered.
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interaction models and the likelihood ratio test statistics
comparing goodness of fit are given in Additional file 1:
Table S1.
An example of data for one of the interactions is shown

in Figure 2. Figure 2b shows the distributions of the ex-
pression of HLA-G in the liver stratified by pairwise geno-
typic combinations. Both main effects, A and B cause a
decrease in HLA-G expression as seen by the shift in
means of HLA-G for genotypes AABB, AaBB, and aaBB
and ABBB, AABb and AAbb. In the absence of interaction,
mean HLA-G expression for the aabb genotype is ex-
pected to be less than that for the aaBB and AAbb geno-
types. Consistent with the parameterisation of the model,
epistasis is visible by the increase in HLA-G gene expres-
sion for the aabb genotype (Figure 2a). Representative in-
teractions from the other groups reported are shown in
Additional file 1: Figures S1-S9.
From Table 1, it is apparent that for each significant

interacting SNP pair, the cis- and trans-SNPs occupy
nearby chromosomal regions. In fact, while the genome-
wide screen was searching for trans-SNPs that lie any-
where in the genome, all of the significant findings
occurred in chromosomal regions between 290 kb and
2.16 Mb from the cis-SNP. It would be parsimonious to
assume that the pairs of interacting SNPs governing a
particular transcript are essentially redundant and that
once linkage disequilibrium amongst the cis-SNPs (and
that amongst trans-SNPs) is accounted for, that only one
interaction would remain. This is the case for an unan-
notated transcript on chromosome 5 expressed in the
cerebellum. Once disequilibrium is accounted for at this
locus, the two significant results collapse down to a sin-
gle epistatic effect between a distal SNP (rs13168712)
approximately 2.1 Mb apart from two proximal SNPs
(rs11744596 and rs2932777) that are in complete dis-
equilibrium. However, we found that this was only partly
true. The nine significant interactions at HLA-DRB5 re-
duced to five separate interactions after disequilibrium
was accounted for (Figure 3). While Figure 3 illustrates
that these interactions are independent of disequilib-
rium, we were interested to investigate if they were inde-
pendent of each other. This trend was supported by a
step-wise multiple regression procedure based on the
Akaike Information Criterion, initially fitting all cis and
trans main effect SNPs as well as the nine interaction ef-
fects detected in the screen. We noted that three of the
nine interactions remained significant, indicating that
there are indeed independent interaction effects at this
locus (Additional file 1: Table S2). The three interactions
represented three of the five groupings based on LD. It
is surprising that so many independent interactions are
governing a single RNA.
For the HLA-G locus, significant effects were seen

in both the liver and pre-frontal cortex. The three



Table 1 Bonferroni significant cis-trans interactions in the liver, pre-frontal cortex and the cerebellum

Tissue Cis-SNP Cis position Trans SNP Trans position Transcript Interaction p-value Effect size

Liver rs3129045 6:29652576 rs7761068 6:31333939 HLA-G 9.35 × 10−7 54.67

rs2747442 6:29653186 rs7761068 6:31333939 HLA-G 2.22 × 10−5 47.63

rs2747436 6:29651935 rs7761068 6:31333939 HLA-G 2.54 × 10−5 45.42

Pre-frontal cortex rs9267873 6:32199352 rs2247056 6:31265490 HLA-DRB5 2.19 × 10−8 83.34

rs9267873 6:32199352 rs6457374 6:31272261 HLA-DRB5 2.74 × 10−8 83.10

rs507778 6:32209861 rs6457374 6:31272261 HLA-DRB5 1.57 × 10−7 −80.99

rs507778 6:32209861 rs2247056 6:31265490 HLA-DRB5 2.32 × 10−7 −79.75

rs2072633 6:31919578 rs3093998 6:31485174 HLA-DRB5 1.05 × 10−7 74.74

rs592229 6:31930441 rs3093998 6:31485174 HLA-DRB5 2.09 × 10−7 72.20

rs805262 6:31628733 rs2247056 6:31265490 HLA-DRB5 2.34 × 10−6 −70.73

rs805262 6:31628733 rs6457374 6:31272261 HLA-DRB5 3.10 × 10−6 −70.46

rs2858331 6:32681277 rs3093998 6:31485174 HLA-DRB5 3.24 × 10−6 −67.31

rs915664 6:30794617 rs3094212 6:31085770 HLA-G 6.56 × 10−7 63.74

rs13201769 6:30756066 rs2524089 6:31266522 HLA-G 7.48 x 10−7 −60.37

rs13201769 6:30756066 rs2243868 6:31261276 HLA-G 8.01 × 10−7 −60.38

rs10947091 6:30747216 rs2524089 6:31266522 HLA-G 9.66 × 10−7 −60.94

rs10947091 6:30747216 rs2243868 6:31261276 HLA-G 1.05 × 10−6 −60.91

rs3869070 6:30023868 rs3093998 6:31485714 HLA-G 1.86 × 10−6 66.69

Cerebellum rs11744596 5:68519291 rs13168712 5:70679626 LOC100506658 1.52 × 10−6 −56.61

rs2932777 5:68525027 rs13168712 5:70679626 LOC100506658 1.52 × 10−6 −56.61

Table shows the interacting cis and trans SNP identifiers, positions and two-locus p-values for the Bonferroni significant interactions in three of the four tissues
studied. Groups of dependent SNPs resulting from linkage disequilibrium amongst groups of cis-SNPs and groups of trans-SNPs are demarcated by a black
horizontal line.
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interactions reported in the liver collapse to a single
interaction. The three cis-SNPs are in LD (0.91 < r2 < 1)
and interact with the same trans-SNP. However, the
HLA-G locus in the pre-frontal cortex displays three dis-
tinct epistatic effects independent of LD (Figure 4) and
independent of each other (Additional file 1: Table S3).

Cis-Cis interactions
Given that the significant interactions from the cis-trans
analysis were all intrachromosomal and that the SNPs
involved were near (within 5 Mb) the transcript which
they regulate, we next sought to identify such interac-
tions by testing for cis-cis interactions where the cis-
SNPs were within 10 Mb of the target transcript and of
each other and at least 100 kb apart from each other
and in linkage disequilibrium (r2 < 0.01). A total of
10,349, 135,495, 90,975 and 44,490 tests for cis-cis in-
teractions were conducted in the liver, pre-frontal cor-
tex, cerebellum and visual cortex, respectively. After
Bonferroni correction ( α < 0.05), 34 interactions were
significant in the liver (p < 4.83 × 10−6 ), 321 in the pre-
frontal cortex (p < 3.69 × 10−7), 144 in the cerebellum
(p < 5.50 × 10−7) and 66 in the visual cortex (p < 1.12 ×
10−6). The interactions involve 2, 35, 27 and 16 tran-
scripts in each of the four tissues, respectively. Details
of the interactions for the four tissues are contained in
Additional files 2, 3, 4, 5: Tables S4-S7.
Of the 50 transcripts under epistatic regulation 16 are

unannotated. The remaining 34 transcripts represent 32
genes. Seven of the transcripts are under epistatic regu-
lation in at least two tissues with 2 transcripts, namely,
HLA-G and HLA-DRB5 under epistatic control in the
liver and brain (Figure 5). Table S4 when compared with
Figure 5 indicates that for some of transcripts (e.g.
NCRNA00292, IFT172, USP34, NR1D2), the tissue in
which the epistasis was identified was also a tissue in
which the gene was more predominantly transcribed in
an RNA sequencing analysis that investigated the liver,
pre-fontal cortex and cerebellum [23,24]. While the ob-
servation that an RNA which is expressed more highly
in a tissue may be of greater importance and more likely
to come under epistatic regulatory control makes good
biological sense, it must also be pointed out that the
statistical power to detect epistasis is greater in more
highly expressed RNAs, so this observation may also be
a function of our study design. The set of epistatically
controlled genes are not clearly restricted to tissue-
specific genes, with a number of RNAs found to be
widely expressed (Additional file 1: Table S4). For ex-
ample, the TMPRSS5 protease is the only RNA found in



Figure 2 Interaction between rs915664 (A) and rs3094212 (B) and its affect on HLA-G expression in the pre-frontal cortex. (a) Summary
of the parameters for the interaction model. (b) Histogram displaying the distribution of HLA-G gene expression (normalised to ranks, with a
maximum rank of 576, representing the number of individuals in the study) stratified by pairwise genotypic combinations. The individuals with
the lowest ranks have the lowest gene expression. The red line denotes the mean rank of the HLA-G expression for each genotype. The mean
rank value is denoted xbar. Both main effects, A and B cause an increase in HLA-G expression as seen by the shift in means of HLA-G for
genotypes AABB, AaBB, and aaBB and AABB, AABb and AAbb. In the absence of interaction, mean rank HLA-G expression for the aabb genotype is
expected to be greater than that for the aaBB and AAbb genotypes. Consistent with the parameterisation of the model, epistasis is visible by the
decrease in HLA-G gene expression for the aabb genotype.
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brain but not in kidney, heart and liver. The reported
epistatic interaction affecting HSD17B13 in the cerebel-
lum is count-intuitive as the RNAseq study has found
this RNA predominant in liver but not in the brain. A
general gene ontology analysis considering all possible
molecular functions did not reveal any obviously enriched
set of molecular functions among the set of genes for
which epistasis was observed. However, as our initial ana-
lysis highlighted the importance of the HLA region, we
were interested in whether genes involved in infection or
inflammation may be enriched among the remaining tran-
scripts. We noted three gene functions that, in addition to
the HLA region genes, have roles in dealing with infec-
tion, the FECR1A IgE receptor, the natural killer cell lectin
bearing receptor KLRC2, and the cytokine IL33. Intuitively
it makes good sense for genes that are involved in infec-
tion response to be more sensitive to epistasis since gen-
etic variability in infection response is itself adaptive. It



Figure 3 Redundancy amongst interactions affecting HLA-DRB5 expression in the pre-frontal cortex. (a) Linkage disequilibrium (r2) amongst
cis-SNPs (top right), amongst trans-SNPs (bottom left) and between Bonferroni significant cis-trans interacting SNPs (bottom right). The interactions are
denoted as positive or negative depending on the directionality of the interaction coefficient. (b) Schematic of the relative positions of the SNPs
involved in interactions. By comparing linkage disequilibrium amongst cis-SNPs, amongst trans-SNPS and the direction of the interaction effect, the 9
interactions affecting HLA-DRB5 collapse into 5 three groups of non-redundant interactions, (Group 1: rs9267873-rs2247056, rs9267873-rs6457374;
Group 2: rs507778-rs2247056, rs507778-rs6457374; Group 3: rs805262-rs2247056, rs805262-rs6457374; Group 4: rs2072633-rs3093998, rs592229-
rs3093998, Group 5: rs2858331-rs3093998).
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may well be that pathogen response mechanisms are
enriched for epistasis. Our study is likely not to be well
designed to detect such effects, since the brain is an
immune privileged organ. In future it will be of interest
to test formally in immune system tissues whether
there is indeed a strong enrichment for epistasis in
such factors.
The distance between SNPs involved in cis-cis interac-

tions across the four tissues ranged from 100 kb to
1.7 Mb. Although the minimum distance allowed be-
tween interacting SNPs in the analysis was 100 kb, it is
interesting that the maximum distance between two
interacting SNPs was less than 2 Mb given that the max-
imum possible distance in the search space is 10 Mb.
The empirical cumulative distributions of distances be-
tween interacting SNPs are given in Additional file 1:
Figures S10-S13. Kolmogorov-Smirnov tests were used
to determine whether the distribution of distances be-
tween SNPs involved in significant interactions was dif-
ferent from the distributions of distances between all
interacting SNPs tested in each tissue. In all tissues, the
two distributions were significantly different with p =
1.89 × 10-15 in the liver and p < 1 × 10−16 in the pre-
frontal cortex, cerebellum and visual cortex.



Figure 4 Redundancy amongst interactions affecting HLA-G expression in the pre-frontal cortex. (a) Linkage disequilibrium (r2) amongst
cis-SNPs (top left), amongst trans-SNPs (bottom right) and between Bonferroni significant cis-trans interacting SNPs (bottom left). The interactions
are denoted as positive or negative depending on the directionality of the interaction coefficient. (b) Schematic showing the relative proximity
of SNPs involved in interactions. By comparing linkage disequilibrium amongst cis-SNPs, amongst trans-SNPS and the direction of the interaction
effect, the 6 interactions affecting. HLA-G collapse into 3 three groups of non-redundant interactions, (Group 1: rs10947091-rs2524089,
rs10947091-rs2243868, rs13201769-rs2524089, rs13201769-rs2243868; Group 2: rs915664-rs3094212; Group 3: rs3869070-3093998).
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In the pre-frontal cortex, there is some overlap be-
tween interactions, i.e. different transcripts share inter-
acting SNPs. On chromosome 6 in the pre-frontal
cortex, PSORSIC1, HLA-G and HLA-DRB5 share com-
mon interactors (Additional file 1: Figure S14). The
overlap of interacting SNPs could be indicative of com-
mon regulation. Consistent with this, the expression of
this cluster is correlated with HLA-G showing correla-
tions with PSORS1C1 and HLA-DRB5 (ρ = −0.21, p =
4.21 × 10−7; ρ = 0.18, p = 1.83 × 10−5, respectively)
(Additional file 1: Figure S15).
Interpreting the interactions
SNPs implicated in GWAS may not be the causal SNPs
but rather linked to the causal SNP. In the case of map-
ping the genetic basis of disease susceptibility, if an asso-
ciated SNP falls within a non-coding region, it can be
difficult to decipher a mechanism of how such a SNP
confers risk. With expression studies, associations link
SNPs directly to the expression of a particular transcript
but in itself, does not necessarily reveal anything of the
transcriptional mechanism. Accordingly, we used auxil-
iary data in the form of the 3-dimensional structure of



Figure 5 Transcripts under epistatic regulation in the 4 tissues.
Of the 50 epistatically regulated transcripts discovered, 34 map to 32
known genes (right). The expression of 7 of these genes is under
epistatic control in at least two tissues (bottom) with two genes,
HLA-DRB5 and HLA-G under epistatic control in all four tissues.

Table 2 Epistatic interactions that map to HiC interactions

Tissue HiC interactions

Epistatic Non-epistatic Odds ratio P-value

Liver 14/34 913/9772 6.79 < 0.0001

Pre-Frontal Cortex 118/321 13450/125873 4.86 < 0.0001

Cerebellum 39/105 6758/77511 6.19 < 0.0001

Visual Cortex 19/66 3422/40882 4.43 < 0.0001

SNP pairs that map to HiC interactions (spatially proximate regions of the
genome) are given as the proportion of epistatic interactions that map to at
least one HiC interaction and the proportion of non-epistatic SNP pairs tested
that map to at least one HiC interaction. The odds ratio that a pair of epistatic
SNPs also maps to a HiC physical interaction is given for each tissue. Significance
is assessed using a chi-squared test for goodness of fit.
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the genome [25] and enhancer and promoter annotations
from ENCODE [26] and the Roadmap Epigenomics Pro-
ject [27] in order to help interpret the functional signifi-
cance of the cis-cis interactions reported.

The 3-dimensional genome
The 3-dimensional structure of the genome is known to
play a pivotal role in the regulation of gene expression
via long-range interactions amongst enhancers, repres-
sors and promoters [28]. These looping interactions have
been characterised as part of the ENCODE project in 1%
of the genome in GM12878, K562 and HeLa-S cell lines
[29] and more recently in human fibroblasts [30]. Previ-
ous to this Lieberman-Aiden et. al reported a genome-
wide map of spatial proximity using Hi-C in the
GM06990 lymphoblastoid cell line [25]. We mapped the
interactions reported here to pairs of spatially proximal
genomic regions in the Hi-C data to identify pairs of epi-
static eQTLs whose functional relationship may be me-
diated by long range interactions amongst regulatory
elements. Cis-cis interactions are enriched for physical
interactions in all tissues (Table 2). This enrichment of
physical genomic interactions amongst epistatic interac-
tions suggests a mechanism whereby long range intra-
chromosomal eQTLs affect their target genes. However,
certain caveats relating to resolution and tissue specifi-
city apply. The mapping of SNPs to interacting Hi-C
fragments is low resolution, i.e. a mapping is called if an
epistatic SNP is within 5 kb of a fragment start site. Al-
though this approach has been successful in other stud-
ies [6], the enrichment may not necessarily be due
exclusively to looping interactions but to unknown fea-
tures near looping interactions. Regarding tissue specifi-
city, Dekker and colleagues, in comparing long range
looping interactions in three cell lines report that al-
though certain interactions occur across tissues, a large
proportion of such interactions appear to be tissue spe-
cific [29]. For both these reasons, it is difficult to com-
ment on the role of specific looping interactions and
their effect on the expression of genes under epistatic
regulation for the tissues in this study.

The regulatory genome
Genomic structure can explain how seemingly distant
regulatory elements are coordinated in the regulation of
gene expression but regions of open chromatin including
enhancer and promoter regions are a defining feature of
the regulatory genome. Open chromatin is necessary for
allowing regulatory DNA elements access to each other
and the relevant transcriptional machinery [31]. These
regulatory regions have been extensively characterised
by the ENCODE project and the Roadmap Epigenomics
Project in a multitude of cell types [26,27]. We mapped
SNPs tested for interactions to promoter and enhancer
regions in order to investigate if SNPs involved in epi-
static interactions were enriched for promoter or enhan-
cer mappings. SNPs from the liver study were mapped
to promoter and enhancer annotations as measured in
HepG2 cells by ENCODE and were enriched for neither
promoters (OR = 1.17, P = 1) nor enhancers (OR = 0.41,
P = 0.58). Likewise, SNPs from the three brain tissues
were mapped to promoter and enhancer regions as mea-
sured in 7 brain tissues by the Roadmap Epigenomics
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Project. After correction for multiple testing, epistatic
SNPs in the pre-frontal cortex were enriched for pro-
moter mappings in 2 brain tissues and epistatic SNPs in
the cerebellum were enriched for promoter mappings in
6 brain tissues (Table 3). Epistatic SNPs were not
enriched for promoter mappings in the visual cortex.
Similarly, enrichments were calculated for epistatic SNPs
that map to enhancer regions in the same 7 brain tis-
sues. There is no enrichment for enhancer mappings
(Table 4). A priori, it might have been expected that very
long range effects on gene expression are more likely to
have enhancer marks, rather than promoter marks. It is
possible that regions that engage in long range intra-
chromosomal interactions have a particular distribution
of histone marks that are associated with particular
regulatory conformations.

Conclusions
We initially conducted a genome-wide screen for cis-
trans epistasis governing gene expression. Interestingly,
all of the interactions we report using this search space
are intra-chromosomal (within 290 kb - 2.16 Mb), but
are not due to detectable linkage disequilibrium. Ac-
cordingly, we looked for cis-cis interactions and identi-
fied numerous transcripts under epistatic regulation.
Such cis-cis genetic interactions seem important in the
regulation of gene expression and appear to be a more
significant contributor to large epistatic effects than
inter-chromosomal and cis-trans effects. The patterns of
multiple interactions at the HLA loci may be coupled
with complex looping structures bringing together mul-
tiple DNA regions. Consistent with this, there is enrich-
ment for physical interactions amongst epistatic eQTLs
as well as enrichment for promoters in SNPs involved in
interactions. As such, we propose that the role of distant
cis-cis interactions in the regulation of gene expression
and in disease susceptibility merits careful searching.
Table 3 SNPs that map to promoter regions in brain tissues

Tissue Pre-frontal cortex Cerebellum

Epistatic Non-epistatic OR P-value Epistatic Non-e

AC 19/258 506/19335 2.95 6.9 × 10−6 * 14/151 403/15

HM150 18/258 463/19335 3.1 6.12 × 10−6* 14/151 372/15

AG 13/258 424/19335 2.37 0.004 11/151 358/15

ITL 13/258 465/19335 2.15 0.012 13/151 372/15

GM2 10/258 381/19335 2 0.05 9/151 326/15

MFL 15/258 421/19335 2.77 0.0002 12/151 349/15

SN 15/258 485/19335 2.4 0.002 13/151 313/15

SNPs that map to promoter regions as measured in 7 brain tissues by the Roadmap
SNPs that map to such regions for the set of SNPs involved in epistatic interactions
involved in an epistatic interaction will also be in an enhancer region is given. Sign
significant enrichment of promoter mappings after Bonferroni correction for multip
AC – Anterior Caudate; HM150 – Hippocampus Middle; AG – Angular Gyrus; ITL – In
SN – Substantia Nigra.
Methods
Genotype data & quality control
Individuals from the Human Liver Cohort (HLC) were
genotyped on both the Affymetrix 500 K and Illumina
humanHap650Y platforms. The genotyping protocol for
the HLC has been described previously [5]. The Harvard
Brain Tissue Resource Centre (HBTRC) samples were
genotyped on both the Illumina HumanHap650Y array
and a custom Perlegen 300 k array. Informed consent
and ethical approval for the collection of data relating to
the Human Liver Cohort was obtained from tissue re-
source centres at Vanderbilt University, the University of
Pittsburgh and Merck Research Laboratories. All brain
tissue was acquired by Merck Research Laboratories
from the Harvard Brain Tissue Resource Center at
McLean Hospital where informed consent was obtained
from both the donors and their next of kin. The data
was handled in accordance with the HBTRC guidelines.
The study was approved by the McLean Hospital Insti-
tutional Review Board. For the purpose of this analysis,
only SNPs on autosomes with a minor allele frequency
of greater than 0.2 and a missing value quota of not
more than 20% were considered. The high MAF thresh-
old of 0.2 was used to avoid cells with small counts
when investigating interactions. The highest missingness
of SNPs involved in the finally reported epistatic effects
was 14.64%, 4.17%, 2.66% and 2.48% in the liver, pre-
frontal cortex, cerebellum and visual cortex, respectively.
SNPs were filtered for violations of Hardy-Weinberg
equilibrium using a Chi-Squared test (p < 0.05). After
this, a total of 449,313 SNPs remained from the HLC
samples and 309,976, 310,566 and 309,163 SNPs from
the HBTRC cerebellum, visual cortex and pre-frontal
cortex samples, respectively.
The smartpca program from the EIGENSOFT 4.2

package was used to compute principal components on
the genotypic data to measure population stratification
Visual cortex

pistatic OR P-value Epistatic Non-epistatic OR P-value

883 3.93 9.75 × 10−7* 1/73 282/11304 0.35 0.14

883 4.26 1.42 × 10−7* 3/73 265/11304 0.9 0.99

883 3.41 0.00013* 3/73 251/11304 0.45 0.24

883 3.92 2.14 × 10−6* 3/73 273/11304 0.46 0.26

883 3.02 0.002 2/73 226/11304 1.02 1

883 3.84 8.02 × 10−6* 3/73 250/11304 0.37 0.22

883 4.69 4.68 × 10−8* 3/73 237/11304 0.7 0.64

Epigenomics Project and mined from HaploReg are given as the proportion of
and those not involved in interactions. The odds ratio (OR) that a SNP
ificance is assessed using a chi-squared test for goodness of fit. Tissues with a
le testing (P < 2.4 × 10–3) are denoted with an asterisk (*).
ferior Temporal Lobe; GM2 - Germinal Matrix; MFL – Mid Frontal Lobe;



Table 4 SNPs that map to enhancer regions in brain tissues

Tissue Pre-frontal cortex Cerebellum Visual cortex

Epistatic Non-epistatic OR P-value Epistatic Non-epistatic OR P-value Epistatic Non-epistatic OR P-value

AC 23/258 1547/19335 1.12 0.67 12/151 1364/15883 1.67 0.03 3/73 928/11304 0.32 0.14

HM150 20/258 1387/19335 1.1 0.8 7/151 1200/15883 1.6 0.07 5/73 856/11304 0.9 0.99

AG 24/258 1649/19335 1.1 0.74 9/151 1439/15883 1.63 0.04 3/73 980/11304 0.45 0.24

ITL 21/258 1605/19335 0.98 1 8/151 1427/15883 0.57 0.15 3/73 959/11304 0.46 0.26

GM2 11/258 816/19335 1.01 1 5/151 702/15883 0.74 0.64 3/73 455/11304 1.02 1

MFL 14/258 1401/19335 0.73 0.32 3/151 1219/15883 0.24 0.01 2/73 802/11304 0.37 0.22

SN 26/258 1362/19335 1.48 0.08 6/151 1262/15883 0.48 0.1 4/73 857/11304 0.7 0.64

SNPs that map to enhancer regions as measured in 7 brain tissues by the Roadmap Epigenomics Project and mined from HaploReg are given as the proportion of
SNPs that map to such regions for the set of SNPs involved in epistatic interactions and those not involved in interactions. The odds ratio (OR) that a SNP
involved in an epistatic interaction will also be in an enhancer region is given. Significance is assessed using a chi-squared test for goodness of fit. SNPs involved
in epistatic interactions are not enriched for enhancer mappings in any of the 7 brain tissues.
AC – Anterior Caudate; HM150 – Hippocampus Middle; AG – Angular Gyrus; ITL – Inferior Temporal Lobe; GM2 - Germinal Matrix; MFL – Mid Frontal Lobe;
SN – Substantia Nigra.
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[32]. The significance (p < 0.05) of the components was
determined using Tracy-Widom statistics [33]. For the
liver the first principal component was statistically sig-
nificant but the first three were used as covariates in all
eQTL mapping analyses. For the cerebellum, visual cor-
tex and pre-frontal cortex the first 9, 12 and 10 compo-
nents were significant and used as covariates in all
eQTL mapping analyses. Twenty seven individuals from
the liver and 7, 6 and 7 individuals from the cerebellum,
visual cortex and pre-frontal cortex were detected as
outliers (smartpca default settings) and removed from all
analyses. The resulting sample sizes for each of the tis-
sues was nliver = 403, ncerebellum = 489, npre-frontal cortex =
576 and nvisual cortex = 403.
Expression data
The liver tissue samples were collected from three tissue
resource centres at Vanderbilt University, University of
Pittsburgh and Merck Research Laboratories and the
microarray analysis was conducted on a custom Agilent
44 k array. The expression profiling routine for the liver
samples has been previously described [5]. In brief, ex-
pression is measured as the mean-log ratio relative to a
sex-balanced pool of samples and adjusted for age, sex
and centre of origin. The brain tissue samples were col-
lected from the Harvard Brain Tissue Resource Centre
and the expression profiling conducted on a custom
Agilent array. The brain expression profiling has been
described previously [34]. Similar to the liver data, the
brain gene expression is measured as the mean-log ratio
and has been corrected for gender, RNA integrity num-
ber, pH, post-mortem interval, batch and preservation of
samples. The brain data comprised a mixture of control
samples and samples with Alzheimer's and Huntington's
disease.
The presence of SNPs within microarray expression
probes has been shown to affect the accuracy of RNA
measures [35]. We sought to remove probes containing
common SNPs by mapping probes to the SNPs from the
HapMap CEU population (release 128) and removing
those probes containing SNPs from the analysis. In total,
6858 autosomal probes were removed.
This study considered those RNAs which were most

variable in the sample populations based on the inter-
quartile range (IQR). The interquartile range for each
RNA in the four tissues was computed and the top 5%
of reporters carried forward for the analyses. The IQR
was chosen as a measure of variability over the variance
or standard deviation so as to avoid selecting those
RNAs with extreme values for few individuals. A total of
1599 reporters in the liver and 1621 reporters for each
of the brain tissues were used in the analysis.

Modeling marginal & interaction effects
Independent effects of single SNPs were estimated
using rank-transform (RT) regression. RT-regression is
achieved by ranking the expression values and utilising
them as the dependent variable in a linear model [36].
RT-regression has been evaluated in the context of
GWAS where it performs similarly to classical regression
when assumptions of normality are met but has greater
power and control of family-wise error rates in the pres-
ence of non-normality [37]. Genotypes AA, Aa and aa
were encoded as 0, 1 and 2, respectively, where A de-
notes the major allele and a, the minor allele. Putative
marginal eQTLs were designated as either cis or trans
depending on their location relative to the midpoint of
the expression probe coordinates. For the cis-trans
study, cis-SNPs were defined as those which lie within
1 Mb upstream or downstream of the probe midpoint.
Conversely, trans-SNPs were defined as those located
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outside of 1 Mb upstream or downstream of the probe
midpoint or occupying a different chromosome. For the
cis-cis study, cis-SNPs were defined as those SNPs which
fall within 10 Mb of the probe midpoint. The putative
cis and trans eQTLs were separately corrected for mul-
tiple testing using the Benjamini-Hochberg approach to
control false discovery rates (FDR) [38].
Depending on the search space strategy, where an ex-

pression phenotype had both a cis and trans eQTL or
two cis-eQTLs at an FDR of 50%, the interaction of
those eQTLs was computed using a RT-regression
model. Only pairs of SNPs with a minimum sample size
of 10 individuals in each of the nine genotypic combina-
tions of a pairwise interaction were considered. Fitting
of both the marginal and interaction effect models was
performed using R. Interactions were computed as the
product of the two loci with possible values of 0, 1, 2 or
4 representing the nine genotypic combinations of a
pairwise interaction. An additive model was chosen as it
requires the fitting of just a single interaction term
alongside the two marginal effects. The consideration of
dominance would require fitting four main effects (2
additive and 2 dominant) and four interaction terms
(additive*additive, dominant*dominant and 2 additive*-
dominant interactions) and as such require a larger sam-
ple size in order to detect such interactions. While not
all epistatic effects are likely to follow an additive model,
it was chosen primarily to maximise statistical power of
detecting any epistatic effects. The significance of the
interaction was determined using the p-value of the re-
gression coefficient of the interaction term in the model.
Interactions were corrected for multiple testing using
the Bonferroni correction (α < 0.05) across all tests for
that tissue. Step-wise multiple regression to determine
the independence of interactions, where reported, was
assessed using a step-wise multiple regression procedure
based on the Akaike Information Criteria using the
step() function in R. As an initial model, all main and
interaction effect terms were fitted.
Linkage disequilibrium (LD) between interacting

SNPs was measured using PLINK [39]. To ensure that
interacting SNPs on the same chromosome were inde-
pendent, we only tested interactions among those intra-
chromosomal SNP pairs with an r2 < 0.01, as measured
in the samples for that particular tissue. In order to de-
termine the numbers of independent interactions, link-
age disequilibrium was also measured amongst sets of
significant SNP pairs that were chromosomally adja-
cent. Differences between the distributions of the dis-
tances between interacting SNPs and the entire set
of interactions tested were tested using Kolmogorov-
Smirnov statistics. The potential for the cross hybrid-
isation of probes whose expression is under epistatic
control was determined using BLAST. The probe
sequence was compared to the RefSeq RNA database
using a discontiguous megablast. In the case of the cis-
trans study, no probes had a match other than itself
whereas for the cis-cis study, 9 probes representing 5
transcripts were removed from the set of significant
interactions.
Enrichment for regulatory annotations
Promoter and enhancer annotations for cis-cis interacting
SNPs were taken from HepG2 cells as measured by EN-
CODE and from 7 brain tissues (Anterior Caudate,
Hippocampus Middle, Angular Gyrus, Inferior Temporal
Lobe, Germinal Matrix, Mid Frontal Lobe, Substantia
Nigra) as measured by the Roadmap epigenomics Project
[26,27]. The annotations were gathered from HaploReg
[40,41] and enrichment calculated using a Chi-squared
test of independence comparing the number of SNPs in-
volved in significant interactions that map to promoter or
enhancer elements to all other SNPs tested for interac-
tions. SNPs from the liver were tested for enrichments
using the HepG2 annotations and SNPs from the three
brain tissues were tested from regulatory annotations in
the 7 brain tissues.
Physical interactions from Hi-C
The genomic coordinates of interacting SNP pairs were
mapped to the human genome hg18 build using the
UCSC LiftOver tool [42]. Epistatic interactions were
then mapped to known physically interacting regions of
the genome measured in lymphoblastoid cell lines [23].
The same criteria of Cheung et al. [6] was used to map
epistatic eQTLs to interacting regions, i.e. a pair of epi-
static eQTLs were deemed to be in a physically interact-
ing region of the genome when both eQTLs mapped
one each +/−5 kb upstream or downstream of the align-
ment start sites. Enrichment for epistatic interactions
were computed using a Chi-squared test of independ-
ence comparing the number of epistatic interactions that
map to at least one Hi-C interaction to the number of
Hi-C mappings in the remaining non-epistatic interac-
tions tested.
Accession codes
Microarray data for gene expression data in the liver can
be downloaded from the gene expression omnibus
(GEO) archive, accession no. GSE9588. Microarray data
for gene expression in the pre-frontal cortex, cerebellum
and visual cortex can similarly be downloaded from
GEO, accession no. GSE44772, GSE44768, GSE44770,
and GSE44771. The Hi-C data can also be downloaded
from GEO, accession no. GSE189199.
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Additional files

Additional file 1: Supplementary tables and figures.

Additional file 2: Table S4. Bonferroni significant cis-cis epistatic eQTLs
in the liver. Table details the chromosome and position of the interacting
SNPs (SNP1 and SNP2) and whether these SNPs occupy promoter and/or
enhancer regions. Where a pair of interacting SNPs maps to a physically
interacting HiC region, the HiC fragment is given. The statistics for the
interaction models (effect size, p-value and adjusted r2) are given as well
as the linkage disequilibrium (r2) between interacting SNPs.

Additional file 3: Table S5. Bonferroni significant cis-cis epistatic eQTLs
in the pre-frontal cortex. Table details the chromosome and position of
the interacting SNPs (SNP1 and SNP2) and whether these SNPs occupy
promoter and/or enhancer regions. Where a pair of interacting SNPs
maps to a physically interacting HiC region, the HiC fragment is given.
The statistics for the interaction models (effect size, p-value and adjusted r2)
are given as well as the linkage disequilibrium (r2) between interacting SNPs.

Additional file 4: Table S6. Bonferroni significant cis-cis epistatic eQTLs
in the cerebellum. Table details the chromosome and position of the
interacting SNPs (SNP1 and SNP2) and whether these SNPs occupy
promoter and/or enhancer regions. Where a pair of interacting SNPs
maps to a physically interacting HiC region, the HiC fragment is given.
The statistics for the interaction models (effect size, p-value and adjusted r2)
are given as well as the linkage disequilibrium (r2) between interacting SNPs.

Additional file 5: Table S7. Bonferroni significant cis-cis epistatic eQTLs
in the visual cortex. Table details the chromosome and position of the
interacting SNPs (SNP1 and SNP2) and whether these SNPs occupy
promoter and/or enhancer regions. Where a pair of interacting SNPs
maps to a physically interacting HiC region, the HiC fragment is given.
The statistics for the interaction models (effect size, p-value and adjusted r2)
are given as well as the linkage disequilibrium (r2) between interacting SNPs.
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