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ABSTRACT
The task of Query Performance Prediction (QPP) in Information
Retrieval (IR) involves predicting the relative effectiveness of a
search system for a given input query. Supervised approaches for
QPP, such as NeuralQPP [23] are often trained on pairs of queries
to capture their relative retrieval performance. However, point-
wise approaches, such as the recently proposed BERT-QPP [1],
are generally preferable for efficiency reasons. In this paper, we
propose a novel end-to-end neural cross-encoder-based approach
that is trained pointwise on individual queries, but listwise over
the top ranked documents (split into chunks). In contrast to prior
work, the network is then trained to predict the number of relevant
documents in each chunk for a given query. Our method is thus a
split-n-merge technique that instead of predicting the likely number
of relevant documents in the top-𝑘 [1], rather predicts the number
of relevant documents for each fixed chunk size 𝑝 (𝑝 < 𝑘) and then
aggregates them for QPP on top-𝑘 . Experiments demonstrate that
our method is significantly more effective than other supervised
and unsupervised QPP approaches yielding improvements of up
to 30% on the TREC-DL’20 dataset and by nearly 9% for the MS
MARCO Dev set.
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1 INTRODUCTION
The objective of Query Performance Prediction (QPP) is to auto-
matically estimate the retrieval quality of a search system for a
query without the presence of relevance assessments [10]. Tradi-
tionally, QPP approaches have mainly consisted of unsupervised
methods [12] which use the specificity of query terms (e.g. esti-
mated with collection statistics), coupled with information from
the top-retrieved set of documents on how topically distinct they
are with respect to the rest of the collection [6, 19–22, 24]. Here
a more distinct top-retrieved set is potentially indicative of more
effective retrieval. Aspects of the top-retrieved documents that have
been reported to be most useful for the QPP task have included the
document scores themselves (also known as retrieval status values
or RSVs) [24], together with their standard deviations [22].

Recently, supervised approaches have been shown to outper-
form their unsupervised counterparts [1, 3, 7, 23]. The increase
in effectiveness, however, comes at the cost of necessitating the
availability of a set of queries with ground-truth relevance assess-
ments, which are used for supervised training. The first supervised
approach proposed for QPP, the NeuralQPP method [23], used pairs
of queries to learn a binary indicator denoting which one of the
pair leads to a better (or worse) retrieval effectiveness. The study
[23] proposed using a combination of RSVs, the term-document
matrix of the top-𝑘 retrieved set, and word embedding features as
inputs to a neural network.

The main disadvantage of a pairwise strategy is that the num-
ber of pairs is quadratic with respect to the training set size, thus
causing a significant increase in training time [1]. As a solution,
the authors of [1] showed that a pointwise approach, which makes
use of a cross-encoding based interaction of the BERT vectors of
constituent query and document terms (an architecture that has
been shown to be effective for passage and document relevance
ranking [14, 17]), can perform well at QPP in practice. Instead of
predicting a relative measure of query difficulty across a pair, the
training objective in this case seeks to directly predict a retrieval
effectiveness measure (e.g. MRR@10).

Motivated by the success of BERT-based QPPmodels [1], a group-
wise query estimation framework is proposed [3] that utilizes both
cross-query and cross-document information across groups to learn
the query performance predictor. Similar to BERT-QPP, this is also
a regression-based model that predicts individual score for each
query-document pair. However, the end QPP score per query is
obtained by aggregating predictions in each group.
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Figure 1: Schematics of our proposed neural model ‘qppBERT-
PL’ for a given query 𝑄 and a list of top-ranked 𝑘 documents,
{𝐷1, 𝐷2, . . . , 𝐷𝑘 } partitioned into ⌊𝑘/𝑝 ⌋ chunks, each of size 𝑝. The
query-document cross-encoded representations (Θ(𝑄,𝐷𝑖 )) for each
chunk along with the rank of a document in the form of BERT po-
sitional embeddings [9], are then encoded via an RNN (specifically,
LSTM in our case). This is then passed through a fully connected
layer (FC) terminating at a 𝑝 + 1 dimensional Softmax representing
the probability of finding 𝑟 relevant documents within this 𝑝-sized
chunk (𝑟 ∈ {0, 1, . . . , 𝑝 }). Through our experiments, we show that (1)
top-𝑘 chunking, (2) rank embedding, (3) sequence modeling, and (4)
count prediction/aggregation are all important components of our
approach.

Our Contributions. The key contribution of this paper is a
novel architecture and objective function for a pointwise neural
query performance predictor. Instead of using a regression model
to learn an aggregated retrieval effectiveness measure, we rather
transform the pointwise QPP objective into a classification task,
where we seek to explicitly predict the number of relevant docu-
ments likely to be observed in the set of top-retrieved documents.
This choice is motivated by the first principle of QPP.

Moreover, in contrast to BERT-QPP [1], which models the top-
retrieved documents as a set, our approach models this as a sequence,
thus taking into account the relative positions (or ranks) of the top-
𝑘 documents. Hence, our proposed model can be categorized into
a ‘pointwise-query and listwise-document’ approach, which,
to the best of our knowledge, has not been explored by the IR
research community yet for the purpose of QPP. Our experiments
demonstrate that the proposed approach achieves improvements
of approximately 30% and 9% over the state-of-the-art QPP method
BERT-QPP on TREC-DL’20 and MS MARCO Dev sets, respectively.

2 PROPOSED METHOD
In this section, we describe the details of our proposed neural ar-
chitecture. The objective of the model is to predict the retrieval
effectiveness or QPP score for a query 𝑄 , as a function of the
query itself and the ordered set of top-retrieved documents𝑀𝑘 =

{𝐷1, 𝐷2, . . . , 𝐷𝑘 }:
𝜓 (𝑄,𝑀𝑘 ) ↦→ R. (1)

Network Architecture. To model the input𝑀𝑘 as an ordered
set of documents, we make use of a recurrent neural network to
encode the documents in sequence. Specifically, we use LSTM units
[2, 13] for modeling the sequence (see Figure 1). An important
decision choice with QPP estimators relates to the size of the top-
retrieved document set. In the case of many popular QPP methods
(e.g. NQC [22], WIG [24]), these have been reported to work well
when using information from the top-100 documents. However,
encoding such long sequences of 100 documents (which are them-
selves sequences of words) is likely to be noisy. Consequently, we
segment the ordered set 𝑀𝑘 into equal sized partitions (chunks) of
smaller ordered sets, namely

𝑀𝑘 =

⌊𝑘/𝑝 ⌋⋃
𝑖=1

{𝑀 (𝑖)
𝑘

} = {𝐷1, . . . , 𝐷𝑝 } ∪ . . . {𝐷𝑘−𝑝+1, . . . , 𝐷𝑘 }, (2)

where 𝑝 (< 𝑘) is the size of each partition.
Each partitioned list of documents 𝑀 (𝑖)

𝑘
= {𝐷𝑖 , 𝐷𝑖+1 . . . , 𝐷𝑖+𝑝 },

along with the query 𝑄 , constitutes an input instance. We employ
a BERT-based cross-encoder architecture to model the interactions
between the query and the document terms, followed by an LSTM-
encoded representation of this interaction sequence (Figure 1). For-
mally,

Θ𝑄,𝐷𝑖
= BERT( [CLS]𝑞𝑜 , 𝑞1, . . . , 𝑞 |𝑄 | [SEP]𝑑1, 𝑑2, . . . , 𝑑 |𝐷𝑖 |)

Θ
𝑄,𝑀

(𝑖 )
𝑘

= LSTM(𝜃𝑄,𝐷𝑖
, . . . , 𝜃𝑄,𝐷𝑖+𝑝 ;𝜃𝐿𝑆𝑇𝑀 )

𝑦 (𝑄,𝑀 (𝑖)
𝑘

) = SOFTMAX(𝜙𝑇 .Θ
𝑄,𝑀

(𝑖 )
𝑘

),
(3)

where 𝜃𝐿𝑆𝑇𝑀 and 𝜙 denote the parameters corresponding to the
LSTM and a fully connected layer, respectively, Θ𝑄,𝐷𝑖

denotes
the BERT [9] encoding of the query-document pair (𝑄,𝐷𝑖 ), and
𝑦 (𝑄,𝑀 (𝑖)

𝑘
) denotes the predicted output through a SOFTMAX layer.

We name our proposed method as qppBERT-PL, the naming
convention being explained below. Since our proposedmodel makes
use of a sequence of chunked documents, it can be categorized as a
listwise-document approach, which is why we include the suffix
‘L’ (denoting Listwise). On the other hand, since we incorporate
the relative position (rank) information of the documents (so as to
distinguish one input chunk from another), we include the suffix ‘P’
in the name of the model to denote the Position or absolute ranks
of documents.

Incorporating Rank Embeddings. Since we provide the in-
formation from the top-𝑘 retrieved list as separate chunks 𝑀 (𝑖)

𝑘
,

each of size 𝑝 , we require a way to establish a link between these
input chunks. A convenient way of doing this is by incorporating
positional information into the embedded documents (Θ𝑄,𝐷𝑖

). We
borrow an idea from the BERT model itself, which uses positional
embeddings to indicate the relative positions of each token in the
input text. Similarly, for a chunk 𝑀

(𝑖)
𝑘

comprised of documents
𝐷𝑖 , 𝐷𝑖+1, . . . , 𝐷𝑖+𝑝 , we add an embedding tied to 𝑖 (i.e., the docu-
ment’s rank) to the Θ𝑄,𝐷𝑖

representation. It is important to note
that our objective here is to model the sequence of documents, and
not the sequence of the words themselves, as is the case in many
NLP tasks.
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Training Objective. The ground-truth values that the network
seeks to predict correspond to the number of relevant documents
in each partition 𝑀

(𝑖)
𝑘

, which is an integer between 0 (none of
the documents are relevant) and 𝑝 (all documents are relevant). To
account for the likelihood of these 𝑝+1 possible integer (categorical)
values, we model the output layer as a 𝑝 + 1 dimensional Softmax.

Inducing the Query Ranks from the Estimator. As a final
step, we compute a weighted average from the outputs of the net-
work, 𝑦 (𝑄,𝑀 (𝑖)

𝑘
), predicted for each 𝑝-sized partition of the top-𝑘

documents to obtain an aggregated score, which we eventually
use to sort (in descending order) the queries. More precisely, the
rationale for using a weighted average is to favour the predicted rel-
evance contributions from the chunks towards the top of the ranked
list, in comparison to the ones that are at the bottom. Formally,

𝜓 (𝑄,𝑀𝑘 ) =
⌊𝑘/𝑝 ⌋∑︁
𝑖=1

𝑦 (𝑄,𝑀 (𝑖)
𝑘

)
𝑖

. (4)

The𝜓 (𝑄,𝑀𝑘 ) scores of Equation 4 are subsequently used to yield
an ordering of the set of input queries.

3 EXPERIMENTAL SETUP
We now describe a set of experiments designed to answer the fol-
lowing research questions:
RQ1: Does our proposed qppBERT-PL model improve query per-

formance estimates?
RQ2: Does listwise-by-document modeling improve the effective-

ness of baselines that estimate the performance directly?
RQ3: Are chunk-level predictions important for the effectiveness

of the qppBERT-PL?
RQ4: What is the effect of the Rank Embedding (RE)?

3.1 Dataset
We conduct experiments on the MS MARCO passage dataset [16],
which comprises of over 8.8M passages, along with a set of over
500K topics and relevant document pairs. To evaluate the results of
our QPP experiments, similar to those reported in [1], we use the
validation set of relevance-assessed queries, commonly known as
“Dev”. As in [1], we report our experiments on the queries used in
the TREC-DL tasks from 2019 and 2020 [4, 5]. Table 1 provides an
overview of the three datasets used in this paper.

In contrast to the MS MARCO queries, the ones in the TREC-
DL tasks use depth pooling for relevance assessments, and hence
are associated with a higher number of relevant documents, on
an average, per query. TREC-DL uses a graded relevance. For our
experiments, as per the official metric used in the track, we treat
only the relevance level of 2 as relevant for computing the AP values.
In line with prior work, we estimate the performance of BM25
results andwe perform indexing and BM25 retrieval using PISA [15].
For QPP evaluation, we employ the commonly used correlation
measures - Pearson’s-𝑟 and Kendall’s-𝜏 (denoted, respectively, as
P-𝑟 and K-𝜏). While the former is a standard statistical correlation
measure between two sets of values, the latter is a measure of
the relative number of agreements in ranking order between two
ordered sets of values.

Table 1: Average number of relevant documents for each set of
queries used for the evaluation of QPP in our experiments.

MS MARCO Dev TREC-DL’19 TREC-DL’20

#Queries 6980 43 54
Avg#rel 1.1 58.2 38.7

Table 2: A summary of extensions of the originally proposed BERT-
QPP method [1], which act as ablations in our study. The original
BERT-QPP method acts as one of our baselines. Prediction type
[0, 1] indicates a regression model, whereas Z𝑛 denotes an 𝑛-class
classification.

Model Type Pred. Seq. Chunked RE
𝑔 BERT-QPP [1] Baseline [0, 1] ✗ ✗ ✗

ℎ + Seq. Ablation [0, 1] ✓ ✗ ✗

𝑖 + Seq. + RankEmb Ablation [0, 1] ✓ ✗ ✓

𝑗 qppBERT-PL Proposed Z𝑝+1 ✓ ✓ ✓

𝑘 – Seq. Ablation Z𝑘+1 ✗ ✗ ✓

𝑙 – Chunked Ablation Z𝑘+1 ✓ ✗ ✓

𝑚 – RankEmb Ablation Z𝑝+1 ✓ ✓ ✗

𝑛 – Chunked – RankEmb Ablation Z𝑘+1 ✓ ✗ ✗

3.2 Methods Investigated
Unsupervised baselines. As in [1], we compare with a num-

ber of traditional unsupervised QPP approaches as baselines: Clar-
ity [6], Weighted Information Gain (WIG) [24], and Normalized
Query Commitment (NQC) [22]. A generalizedmodel of NQCwhich
claims that NQC computation can be derived as a scaled calibrated-
mean estimator, namely SCNQC [19] is also considered as a base-
line in this paper. As an additional baseline, we employ UEF [21], a
method which applies a base QPP estimator to aggregate estimates
from a number of subsets sampled from the top-retrieved set. The
contribution from each subset depends on the relative stability in
the rank order before and after relevance feedback with that set. As
the base estimator for UEF, we used NQC, since it yields the most
effective results compared to other post-retrieval estimators.

Similar to [1], we use a small subset, comprised of 100 queries,
randomly sampled from the MS MARCO Dev topic set, to tune the
hyper-parameters of the unsupervised baseline QPP approaches.
The two main tuned hyper-parameters were the number of top-
retrieved documents considered for the post-retrieval QPP methods
(such as NQC, WIG and SCNQC), and the number of documents for
relevance feedback in UEF. The baseline method SCNQC involves
a number of hyper-parameters in terms of scaling and calibrating
the NQC estimation, which we tune via a grid search as prescribed
in [19].

Supervised baselines. As one of the supervised baselines, we
consider NeuralQPP [23]. Unlike BERT-QPP and our proposed
approach, this method is not an end-to-end supervised model as
it requires inputs in the form of the outputs from several QPP
estimators. It then employs weak supervision to learn an optimal
combination of the estimators. As the next baseline method, we use
the cross-encoder version of BERT-QPP [1] (as it outperforms the
bi-encoder version). We refer to this baseline as BERT-QPP.
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Table 3: A comparison between the QPP effectiveness obtained by qppBERT-PL and the baselines. The improvements of the best results obtained
with qppBERT-PL (bold-faced) vs. the best performing baseline, BERT-QPP, are significant (t-test with 95% confidence).

Type Models
MS MARCO Dev TREC-DL’19 TREC-DL’20

MRR@10 AP@100 MRR@10 AP@100 MRR@10 AP@100
P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏 P-𝑟 K-𝜏

Baselines

𝑎 NQC [22] 0.331 0.298 0.285 0.227 0.239 0.185 0.183 0.107 0.259 0.243 0.179 0.124
𝑏 Clarity [6] 0.173 0.248 0.172 0.207 0.156 0.147 0.096 0.113 0.239 0.215 0.107 0.129
𝑐 WIG [24] 0.193 0.215 0.215 0.203 0.192 0.133 0.133 0.089 0.260 0.241 0.143 0.096
𝑑 UEF(NQC) [21] 0.347 0.313 0.294 0.227 0.254 0.235 0.189 0.112 0.275 0.291 0.200 0.126
𝑒 SCNQC [19] 0.334 0.310 0.304 0.228 0.261 0.251 0.204 0.123 0.284 0.298 0.215 0.141
𝑓 NeuralQPP [8] 0.215 0.197 0.173 0.193 0.156 0.126 0.129 0.133 0.271 0.253 0.133 0.112
𝑔 BERT-QPP [1] 0.520 0.411 0.326 0.301 0.350 0.363 0.268 0.202 0.343 0.341 0.233 0.195
ℎ + Seq. 0.463 0.360 0.301 0.312 0.345 0.333 0.265 0.193 0.277 0.218 0.258 0.190
𝑖 + Seq. + RankEmb 0.473 0.370 0.328 0.285 0.323 0.332 0.253 0.167 0.303 0.236 0.252 0.172

Ours

𝑗 qppBERT-PL 0.562 0.448 0.354 0.327 0.413 0.403 0.301 0.247 0.422 0.392 0.303 0.251
𝑘 – Seq. 0.512 0.386 0.303 0.283 0.357 0.349 0.274 0.193 0.345 0.320 0.271 0.200
𝑙 – Chunked 0.520 0.413 0.331 0.274 0.373 0.326 0.290 0.225 0.370 0.333 0.297 0.231
𝑚 – RankEmb 0.519 0.392 0.320 0.267 0.361 0.328 0.285 0.232 0.352 0.331 0.293 0.215
𝑛 – Chunked – RankEmb 0.405 0.329 0.293 0.285 0.309 0.299 0.260 0.159 0.217 0.198 0.199 0.184

Ablations derived from the baseline BERT-QPP. The BERT-
QPP paper uses only a single document to train a regression model
for predicting a target IR evaluation metric value. Since our model
makes use of more than one document, we extend the original
BERT-QPP by additionally encoding the information from top-𝑘
retrieved as a sequence (similar to our proposed approach) so as to
ensure a more fair comparison.

In one of these extended versions (see row ℎ of Table 2), we
only include the information from the top-𝑘 as a flat sequence
(no chunking), whereas in the other version, we include the rank
embedding information similar to our model (see row 𝑖 of Table
2). One of the main differences of our proposed model qppBERT-
PL with the ones shown in the extensions to BERT-QPP (rows ℎ
and 𝑖 of Table 2) is that the latter ones are regression models (see
the ‘Pred.’ column of the table). These extensions to the BERT-
QPP approach act as ablations to our complete model setup, and
allow us to conduct more fair and comprehensive comparisons.

Ablations of our proposed model. In relation to our pro-
posed model qppBERT-PL, we study several ablations by selectively
removing one or more sources of information. First, instead of en-
coding the information from top-𝑘 as a sequence, we simply use the
top-retrieved documents, the only difference with BERT-QPP now
being we include the rank embedding (see row 𝑘 of Table 2).

As our second ablation, instead of presenting a partitioned input
of the top-𝑘 documents to the qppBERT-PL, we learn to predict the
number of relevant documents on the entire top-𝑘 set by applying
a (𝑘 + 1) dimensional Softmax (see row 𝑙 of Table 2).

Similarly, we derive our third ablation by removing the rank
embedding information from qppBERT-PL (see row𝑚). Finally, we
remove both the chunk-based workflow and the rank embedding
information to derive the ablation, shown in row 𝑛 of Table 2.

Implementation-specific details. All the supervised methods
were trained on the MS MARCO training split of the data. The
dimension of the hidden layer for the LSTM cells was set to 768
and that of the dense layer was set to 100, i.e., 𝜃𝐿𝑆𝑇𝑀 ∈ R768

and 𝜙 ∈ R100 (see Equation 3). For the supervised models, we
executed one epoch through the training set with a batch size of
16 as prescribed by the BERT-QPP paper [1]. For the classification
methods, we used a cross-entropy loss. Parameter updates were
performed using the Adam optimizer with a learning rate of 0.011.

For the regression-based methods (rows 𝑔 to 𝑖 of Table 2), we
used the AP@100 values as the ground-truth for regression. In
contrast, the ground-truth for our proposed model and its ablation
variants (methods in the bottom group of Table 2) is the number of
relevant documents of each chunk, or the total number of relevant
documents in top-𝑘 , if chunking is not applied.

4 RESULTS
4.1 Main Observations
Table 3 presents a summary of the results of our experiments. We
first observe that our proposed approach, qppBERT-PL (row 𝑗 ),
outperforms all baseline approaches — including BERT-QPP (𝑔), the
prior state-of-the-art approach — for all three datasets and across
all measures. The relative improvement ranges from 8.1% (MRR@10
P-𝑟 on MS MARCO Dev) to 30.0% (AP@100 P-𝑟 on TREC-DL’20),
clearly showing a marked increase in the ability to predict query
performance. The relative improvement on datasets with deeply-
annotated labels (TREC-DL’19 and 20) were consistently higher
than on the sparsely-annotated MS MARCO Dev set (+11.0–30.0%
compared to +8.1–9.0%). All other baselines we explored (rows
𝑎–𝑓 ) were considerably weaker still. These results clearly answer
RQ1:We find that our proposed qppBERT-PL is more effective at
predicting query performance than other known methods.

To test whether our proposed sequential modeling approaches
can benefit the previous state-of-the-art model as well, we conduct
ablations on BERT-QPP. Rows ℎ and 𝑖 show two versions of BERT-
QPP that are generalised to closer match qppBERT-PL by, rather
than consuming only the top retrieved item, taking the top-𝑘 (and
optionally including rank embeddings). We find that this approach

1Source code is available at https://github.com/suchanadatta/qppBERT-PL.git
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Figure 2: Per-query comparisons of QPP effectiveness between qppBERT-PL and BERT-QPP in terms of scaled Absolute Rank Error (sARE) [11] computed
with MRR (left) and AP (right). Comparisons are made on the TREC-DL dataset, comprising 97 queries. It can be seen that our method (qppBERT-PL) exhibits
lower (hence more effective) sARE values on an average (bars with smaller heights).

Figure 3: Sensitivity of qppBERT-PL on the MS MARCO Dev set (left) and
the TREC-DL query set (right) with respect to the chunk size parameter (𝑝).
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tends to lead to a decrease in QPP performance. In two cases, the
approaches can lead to a slight increase in performance (AP@100
K-𝜏 on MS MARCO Dev and AP@100 P-𝑟 on TREC-DL’19). Mean-
while, note that the sequence modeling appears to be critical for the
success of qppBERT-PL; when sequence modeling is removed from
the model (row 𝑘), QPP performance drops considerably. These
results suggest that attempting to predict ranking effectiveness
scores directly from sequences is challenging for models to learn
using existing techniques, answering RQ2.

We now explore the effect of the proposed rank embedding and
chunking components of qppBERT-PL. We observe that when we
remove chunking (i.e., make a binary decision about each individual
document, row 𝑙) or the rank embedding (i.e., do not provide the
model with information about the absolute rank of the documents,
row𝑚), QPP performance drops to the level of around or below
BERT-QPP. When both of these components are removed (row 𝑛),
the performance drops even further. These results suggest that not
only information about surrounding documents is necessary to
estimate QPP well, but also the absolute rank of the documents
within the ranked list.2 The former observation is aligned with
finding in neural ranking (via “duo” models [18]), but to the best of
our knowledge, the latter has not been observed in other contexts.
To answer RQ3 and RQ4, we find that both chunking and Rank
Embeddings are critical components of our proposed method.

4.2 Analysis
In this section, we report the per-query QPP effectiveness of TREC-
DL topic set. For this, we employ the metric scaled Absolute Rank
Error (sARE) proposed in [11]. More concretely speaking, the sARE
2It is important to remember, however, that the query performance itself is induced
from individual chunk estimations in a final step, where rank information is provided.

metric computes the absolute difference between the position (rank)
of a query when ordered by a ground-truth retrieval effectiveness
metric (e.g. AP) and when ordered by the estimated QPP scores.

Figure 2 plots the sARE metric values for each query for our
method and the best performing baseline, namely BERT-QPP (as ob-
served from Table 3). By comparing the plots in Figure 2, both with
MRR (sARE(MRR)) and AP (sARE(AP)), we observe that qppBERT-
PL leads to lower rank errors than BERT-QPP on the TREC-DL
dataset (on an average the dark-shaded bars are shorter than the
lightly shaded ones).

As further analysis, we investigate how sensitive our proposed
model, qppBERT-PL, is to the chunk size (𝑝). We conduct a grid
search for the optimal chunk size over the set {1, 2, 4, 8, 16, 20}. Fig-
ure 3 shows that the best results are obtained on both MS MARCO
Dev and TREC-DL with a chunk size of 4. We observe that our
method is somewhat insensitive to the chunk size parameter when
𝑝 is in the range between 2 and 8. Beyond this range, i.e., for too
small or too large values of 𝑝 , the effectiveness of qppBERT-PL de-
creases considerably.

The sensitivity plot of Figure 3 thus illustrates that prediction
usually works well when the model is able to leverage information
from a set of documents rather than a single one, as seen from
the relatively low value of QPP effectiveness obtained with 𝑝 = 1.
However, using information from too many documents has a likely
effect of confusing the model as can be seen from the decrease in
QPP effectiveness for 𝑝 > 8.

5 DISCUSSION AND CONCLUSIONS
In this paper we have proposed qppBERT-PL, a ‘Pointwise-Query,
Listwise-Document’ approach for query performance prediction.
We found that the model yields up to a 30% relative improvement
in QPP. To the best of our knowledge, this is the first contribution
in QPP that transforms the pointwise QPP objective into a listwise
classification task.

Since being a BERT-based model qppBERT-PL is at present re-
stricted by the maximum length of a BERT sequence (512 tokens),
in future we plan to generalize the model to work with longer doc-
uments. This may be done by segmenting a long document into
smaller passages and then aggregating the information from these
passages in an effective manner. We are also interested to explore
other neural architectures and training objectives to reduce the
computation time of this listwise-document approach.
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