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Abstract. The identification of cohesive communities is a key process
in social network analysis. However, the algorithms that are effective for
finding communities do not scale well to very large graphs, since their
time complexity is worse than linear in the number of edges in the graph.
This is an important issue as there is considerable interest in applying
social network analysis to large datasets, such as networks of mobile
phone subscribers. In this respect the contributions of this paper are
two-fold. First we demonstrate these scaling issues using a prominent
community-finding algorithm as a case study. We then show that a two-
stage process, whereby the network is first decomposed into manageable
subnetworks using a multilevel graph partitioning procedure, is effective
in finding communities in networks in networks that cannot be handled
by existing community finding techniques alone.

1 Introduction

After several years of academic research on social network analysis (SNA), con-
siderable commercial interest in exploiting SNA has recently emerged. The re-
search reported in this paper is motivated by the prospect of using SNA in
large-scale applications, such as exploring online communities [1], mining web
usage data [2], identifying research trends in bibliographic networks [3], or an-
alysing relationships among mobile telephone subscribers. The identification of
cliques or communities in network data has received a lot of attention in SNA
research, where a number of promising techniques have emerged [4–6]. These
techniques can identify subgraphs such that the density of edges within the sub-
graph is greater than the density of edges connecting the subgraph to the rest
of the network. They can also identify overlapping communities, where an indi-
vidual belongs to more than one group. This is an important facility for network
analysis in many real-world domains.

Another highly significant issue in this area is that of scalability. Unfortu-
nately, it is in the nature of the analysis entailed in common community-finding
algorithms that they do not scale well to very large graphs. In fact, existing
techniques in this area generally cannot handle graphs with more than a few
tens of thousands of nodes (e.g. [6]). In contrast, many real-world networks will
be substantially larger. For instance, in a study reported by Abello et al. [7], a



one-day telephone call graph at AT&T consisted of 53,767,087 vertices and more
than 170 million edges.

To deal with this issue of scalability, we propose a pragmatic problem decom-
position strategy: use a “top-down” graph partitioning technique to decompose
the network into smaller subnetworks, on which it is then feasible to apply a
more computationally intensive community-finding algorithm. To perform the
initial partitioning, we use the multilevel method proposed by Dhillon et al. [8],
referred to as Graclus. For the second stage of the process, the CFinder algo-
rithm [5] is employed to discover small, overlapping communities. The results
of evaluations on synthetic and real data are presented in order to demonstrate
the effectiveness of this strategy. In both cases, we focus on networks with com-
munity structures similar to those occurring in large-scale, real-world networks
such as those pertaining to mobile phone subscribers – i.e. small, dense, localised
communities embedded in a very large sparse graph. We show that we can dis-
cover communities in large graphs in a computationally efficient manner, without
adversely affecting the “quality” of these communities.

The remainder of this paper is organised as follows. The next section provides
a summary of existing methods which are relevant in SNA. We describe our
proposed problem decomposition strategy in Section 3. The datasets used in our
experiments are presented in Section 4, and the findings of our evaluation are
subsequently discussed in Section 5. The paper finishes with some conclusions in
Section 6. Note that an extended version of this paper is available as a technical
report with the same title [9].

2 Related Work

While the distinction between the community-finding and the graph partition-
ing algorithms discussed here is not always clear-cut, we can make general dis-
tinctions. Community-finding algorithms are designed to find regions of dense
structure that are not well connected with the rest of the network. These regions
will often exhibit a certain degree of overlap. In contrast, the graph partitioning
problem involves finding the optimal division of a graph into k disjoint parts
according to a chosen criterion, such that the partition covers the entire graph.
Real applications include VLSI module placement, load balancing for parallel
processing, and image segmentation.

Community-finding algorithms. We briefly review three prominent algo-
rithms that have been employed for community-finding in SNA tasks. The GN
algorithm presented by Newman & Girvan [4] is essentially a top-down hierar-
chical clustering strategy, but with an alternative partitioning criterion. This
criterion is based on the shortest path betweenness measure [10], which is well-
established as a measure of node centrality in SNA. In the GN algorithm the
“edge betweenness” refers to the number of shortest paths in a network that pass
along an edge. Edges that score highly on this criterion are likely to be inter-
cluster edges (i.e. edges that link adjacent clusters). The CONGA technique [6]
extends the GN algorithm to handle overlapping communities. This approach



employs a divisive hierarchical strategy. In order to allow nodes to belong to
more than one cluster, CONGA permits nodes to be split, i.e. a real node v will
be split into {v1, v2} with the incoming edges to v divided between v1 and v2

and a new virtual edge created to link v1 and v2. In contrast to the GN method
which is top-down, the Clique Percolation Method proposed by Palla et al. [5]
is a bottom-up technique that uses cliques as building blocks for large groups.
Their approach first extracts all maximal complete subgraphs (i.e. cliques) that
do not form part of larger complete subgraphs, and composes these into larger
structures. Although an efficient approach for finding all cliques in a general net-
work may not be feasible since determining a maximum clique is NP-hard, Palla
et al.nevertheless claim that their approach performs well on real networks.

It is important to note that techniques for optimising an appropriate con-
nectedness criterion will often have bad time complexity, thus limiting their
applicability to very large graphs. Newman & Girvan say the time complexity
of their algorithm is O(n3) on sparse graphs, so it could be applied to graphs of
up to 10,000 nodes at the time of publication in 2003. Gregory states that the
worst case time complexity of this algorithm is O(e3), where e is the number of
edges. In practice CONGA has been shown to handle networks of up to 4,000
nodes and 7,000 edges. Palla et al.point out that it is difficult to analyse the
time complexity of CFinder given the nature of the algorithm.

Graph partitioning. Of the vast array of approaches that have been proposed
in the literature, two of the most important classes are spectral clustering and
multilevel partitioning. Spectral methods produce a partition based on the eigen-
decomposition of the graph. Spectral approximations for a variety of partitioning
criteria have been formulated, including the minimum cut [11], ratio cut [12], and
normalised cut [13]. Many multilevel approaches for graph partitioning have been
developed over the years, the Metis algorithm [14] being the most well-known
example. In these approaches a sequence of successively smaller, coarser hyper-
graphs is computed. A bisection of the smallest hypergraph is computed and is
successively projected to the next finest level. At each level, an iterative refine-
ment algorithm is used to improve the bisection. Most multilevel algorithms are
based on the seminal work by Kernighan & Lin [15]. Recently, Dhillon et al. [8]
developed a fast multi-level algorithm that directly optimises various weighted
graph clustering objectives. They show that a general weighted k-means objec-
tive is mathematically equivalent to a weighted graph clustering objective and
exploit this equivalence. The main advantage of their method is that it optimises
this objective without requiring an eigendecomposition, which can be computa-
tionally costly for large graphs. Another advantage is that, unlike other popular
multilevel approaches, it does not require the partitions to be of equal sizes.

3 Problem decomposition strategy

While community-finding algorithms have been aimed at SNA applications, these
techniques are computationally expensive and the communities they discover are
small – normally comprising some tens of nodes. When dealing with very large



graphs, which may potentially contain hundreds of thousands or even millions
of nodes, algorithms with running time O(e2) or O(e3) will not be practical.
Therefore the question arises, how can we find small communities in such large
networks? The approach we take in this paper is to employ a two-stage problem
decomposition strategy outlined below:

Stage 1: Given a large graph, apply a computationally tractable graph parti-
tioning algorithm that minimises the number of links broken in the process.

Stage 2: Once the original graph has been split into manageable subgraphs,
apply a more computationally intensive community-finding algorithm to each
subgraph and combine the results.

For the first stage of the process, we suggest the use of the implementation of
the multilevel partitioning method proposed by Dhillon et al. [8], referred to as
Graclus1. We choose this approach as it allows us to optimise the objectives for
spectral clustering, which have previously proved successful in other areas [13],
but without requiring a costly spectral decomposition. Thus Graclus will provide
a partitioning of a large graph with a small running time. For the second stage
of the process, we employ the CFinder algorithm [5], as it supports the discovery
of overlapping, localised and nested communities. It should be noted that, while
we focus on the pairing of Graclus and CFinder in the remainder of this paper,
any reasonable combination of algorithms can be used.

4 Experimental Datasets

In this paper we perform two sets of experiments, one using synthetic data, the
other using a real-world network. We now describe the details of these datasets.

Synthetic data. We made use of artificial data for two main purposes. Firstly,
we wished to examine how community finding techniques scale to large, sparse
graphs, approaching the size of those occurring in real-world problems such as
measuring churn in mobile subscriber networks. Secondly, we wished to assess
to what extent graph partitioning techniques preserve communities intact.

To construct the artificial datasets2 for our evaluation, we followed a proce-
dure similar to that outlined by Newman & Girvan [4]. The basic idea is that
nodes in each of the communities acquire edges among other members of the
same community, as well as nodes outside the community, with certain probabil-
ities. Let pin denote the probability with which a node in a community acquires
edges with other members of the same community, and pout denote the proba-
bility with which it acquires edges randomly with the rest of the nodes. When
constructing artificial graphs, values for these two parameters can be reached in
a number of ways. For instance, Newman & Girvan [4] fix the expected degree
of each vertex, and then compute values for pin and pout accordingly.
1 Available from http://www.cs.utexas.edu/users/dml/Software/graclus.html
2 Available for download at http://mlg.ucd.ie/datasets/graph.html



While the term “community” is not clearly defined in the literature, in most
cases it is used to refer to a group of nodes which have a high degree of connec-
tivity among themselves, relative to the rest of the network. In order to capture
this notion of a community, we introduce the measure assoc, which quantifies
the connectivity between a community C and a graph G, where C ⊂ G,

assoc(C,G) =
∑

u∈C,v∈G,u 6=v

w(u, v) (1)

and where w(u, v) is the weight of the edge connecting a pair of nodes u and v.
Note that in the data described here, edge weights are either 1 or 0. In this case
assoc(C,C) is a count of the number of edges connecting nodes within C, and
we can use pin(C) as a quality measure where

pin(C) =
assoc(C,C)
c× (c− 1)/2

(2)

and c = |C|. Another measure of community quality is the ratio r(C) of the
within-community connectivity in C to the connectivity of the community’s
nodes to the entire graph:

r(C) =
assoc(C,C)
assoc(C,G)

(3)

To construct the graphs used in our experiments, we fix the values for the
two measures pin(C) and r(C) for all communities – thus the graphs are defined
by the parameters pin and r. From these values, we can compute the other
parameter pout used by Newman & Girvan [4]. We chose to fix pin as opposed
to pout, since it has a straightforward interpretation – it is a measure of how
close the community is to forming a maximal clique. For evaluation purposes,
we constructed “unit” graphs consisting of 1,000 nodes, containing embedded
communities of different sizes, ranging from 10 to 40 nodes. Successively larger
graphs were then generated such that the number of nodes and communities
were scaled by the same integral ratio. For example, a graph of 2,000 nodes had
exactly twice the number of communities of the same respective sizes as a graph
of 1,000 nodes.

Real data. The CORA bibliographic dataset [16] contains information and
annotations such as authors, cited papers and topic for over 50,000 research
papers3. For our evaluation, the paper citation graph derived from the CORA
dataset was used. Only the papers with available authors were selected, where
the total number of these was 28,400. We suggest that this graph is a reason-
able proxy for real-world data, such as mobile subscriber networks, since the
communities are small despite the scale of the graph – typically containing 10
to 20 members. The edge directions and weights were ignored and the largest
weakly connected component was used for the experiments described in the next
section. This resulted in a graph consisting of 24,542 nodes.
3 See http://www.cs.umass.edu/∼mccallum/code-data.html



5 Experimental Evaluation

The evaluation presented in this section has two objectives: (i) to highlight the
scalability advantages of the two stage process, (ii) to demonstrate that the prior
application of graph partitioning does not adversely affect our ability to locate
communities in a large graph. For the synthetic data, we ran experiments on
multiple datasets generated using a range of values for the parameters pin and
r. Although the actual running times varied, the trends were highly similar.
Hence we discuss in detail results corresponding to one set of values, namely pin

= 0.7 and r = 0.7. These values correspond to a problem where communities have
reasonably well-defined “signatures”, but where it is still potentially challenging
for graph partitioning algorithms to recover these communities intact. Note that,
due to space constraints, we refer the reader to [9] for a full discussion of the
results produced during the course of our evaluation.

5.1 Scalability

Firstly, we consider the problem of scaling community-finding algorithms such
as CFinder to very large graphs.

Synthetic data. We illustrate the results pertaining to running time of CFinder
on graphs generated as described in Section 4. The average size of communities
remains constant as the graphs grow – i.e. the average community size in a large
network is not greater than a smaller network. The experiments were repeated
multiple times. The average execution times for CFinder (computed from 50
runs) are shown in Figure 1. We observe a steep increase in running time as
the graphs grow in size, even though the average community size is the same.
For example, in Figure 1(a) we see that the average execution time on a graph
consisting of 5,000 nodes is nearly 18 times greater and for a 10,000 node graph
is nearly 70 times greater than that of a graph of 1,000 nodes.

The running times for the problem decomposition strategy are also shown
in Figure 1(a). It can be clearly seen that this strategy results in a dramatic
reduction in total running time. The combined times are computed as follows.
Let the graph be partitioned into k parts. The total running time on a graph
may be expressed as T = Gk +

∑k
i=1 Ci, where Gk denotes the execution time for

partitioning the graph into k parts using Graclus, and Ci denotes the execution
time of CFinder on the ith subgraph resulting from the graph partitioning. For
our datasets, the running time for Graclus was usually a fraction of a second
for graphs consisting of up to a few tens of thousands of nodes. Thus the total
running time was dominated by the CFinder execution times on the individual
subgraphs.

We have only shown the combined running times for graphs containing up
to 10,000 nodes in Figure 1 for the sake of clarity of illustration and direct
comparison. We found that graphs of 10,000 nodes and more than 80,000 edges
were close to the limit of what can be handled on a 2GHz dual core server with
4GB RAM, running 64-bit Linux. However, the problem decomposition strategy
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Fig. 1. (a) Scalability : Mean execution times against graph size for CFinder on syn-
thetic data for (i) CFinder alone, (ii) two-stage strategy; (b) Solution quality of graph
partitioning – i.e. fraction of communities preserved intact to different degrees

permits discovery of communities in graphs of sizes significantly larger than
possible using the community finding algorithm on its own.

We remark here that the actual running time of both CFinder and Graclus
vary somewhat depending on the actual graph, as well as the configuration of
the machine they are run on. In many cases, it is hard to exactly quantify
the size dependence of these algorithms. However, spectral clustering techniques
in general and Graclus in particular (which avoids a computationally costly
eigendecomposition) can usually be run on much larger graphs than community-
finding algorithms. Thus in most cases the two-stage problem decomposition
approach would help to “extend the reach” of community finding algorithms.
Another point to note is that while the total combined execution times are shown
in Figure 1(a), the community finding algorithm can be run in parallel on the
individual subgraphs resulting from the graph partitioning, thereby minimising
the real time required for processing the full graph.

Real data. For the synthetic data, the exact number and size of communities
was known in advance. While we cannot assume such a “ground truth” in the case
of the CORA dataset, it is straightforward to check whether any communities
discovered by running CFinder on the entire graph are missing when CFinder is
run on the individual subgraphs obtained from graph partitioning. In the case
of the two-stage process, the communities obtained from the different subgraphs
were pooled together, with duplicates removed. As a first step we compared the
total number of communities obtained from the entire graph with those obtained
from partitioning the graph into {2, 3, . . . , 10} parts. These are illustrated in
Figure 2, with the actual numbers shown in Table 1.
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Fig. 2. The first plot shows the total number of communities found on the CORA
dataset, while the second plot shows actual execution times (in seconds). Note that the
first data point in both plots corresponds to the single stage process (i.e.CFinder on
its own), while the remaining points correspond to the combined two-stage process.

# Partitions # Communities (combined) Total execution time

1 3601 1430.98
2 3572 773.55
3 3559 529.42
4 3524 318.52
5 3517 250.46
6 3490 209.66
7 3501 173.18
8 3470 156.15
9 3476 126.18
10 3448 128.83

Table 1. Comparison of CFinder on the paper citation graph and its subgraphs, in
terms of the number of communities discovered and execution times (in seconds).

Next we compared the specific communities discovered by both processes and
found very significant overlap. For example, the total number of communities
obtained by running CFinder on the full graph was 3,601 and the total num-
ber corresponding to partitioning into two subgraphs was 3,572. The number of
communities in the two sets that were identical was 3,454. Of the remaining 147
communities obtained from the full graph, there were close matches amongst
the remaining 118 obtained from two subgraphs. When the graph was parti-
tioned into ten subgraphs, the total number of communities was 3,448, of which
2,967 had exact matches from among the communities of the full graph. Thus,
while a significant reduction in execution time was achieved when the two-stage
procedure was employed, there was also minimal loss of information overall.



5.2 Solution Quality

The second objective of our evaluation was to assess the extent to which graph
partitioning preserves communities when applied to a large graph. For this pur-
poses, the synthetic data described in Section 4 is useful for assessing solution
quality, since it allows us to directly determine whether the communities inserted
into the graph are preserved by the first phase of the two stage process (i.e. graph
partitioning using Graclus). We adopt the following procedure to assess to what
extent communities are preserved:

– For each experimental run, compute the proportion of communities where all
the community members are grouped together in a single cluster (i.e. kept
fully intact) by the graph partitioning approach.

– Average this value over multiple runs – i.e. compute the mean percentage of
communities preserved fully intact.

– Repeat the above steps for different extents of intactness (10%, . . . , 90%).

The results of this evaluation are illustrated in Figure 1(b), where the the x-axis
represents the degree of intactness (percentage) and the y-axis the proportion
(percentage) of communities preserved to that degree. The different plots cor-
respond to graphs of different sizes (2,000 to 100,000 nodes). We see from the
figure that, communities were fully intact at least 98% of the time on average,
across all graph sizes. In our experiments, even when a community was not 100%
intact, a relatively large section of the community remained intact. Also most
of the communities broken up were the smallest ones. Thus the picture is even
more optimistic when only larger communities are considered.

For the purpose of illustration in Figure 1, we chose the number of partitions
k to be the size of the graph divided by the size of the smallest graph (i.e. 1,000
nodes). Thus, a value of k = 2 was used for a graph containing 2,000 nodes.
In practical applications, the value of k can be selected based upon the largest
graph that can be handled in a “reasonable” time. Another possibility is to
recursively partition the graph until all the subgraphs are small enough for the
community finding algorithm to handle. Although we tried different numbers of
partitions for each of the graphs in our experiments, changing the value of k
did not appear to significantly impact upon the ability of the two-stage process
to preserve communities intact. However, this behaviour may not necessarily be
the case in general.

6 Conclusion

In this paper, we have proposed a two-stage problem decomposition strategy for
SNA that facilitates the application of computationally expensive community-
finding algorithms to much larger networks than would otherwise be possible
if these algorithms were applied on their own. The two-stage strategy involves
using a “top-down” graph partitioning technique to divide the network into
smaller subnetworks, on which it is then feasible to apply a more computationally



intensive community-finding algorithm. We have demonstrated the usefulness of
this strategy in empirical evaluations on both artificial and real-world datasets,
where the computational cost of the network analysis process was significantly
reduced without adversely affecting the quality of the communities that were
discovered.
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